基于TMS320LF2407的馈线终端装置设计

发布者:MindfulYogi最新更新时间:2009-02-25 来源: 国外电子元器件关键字:TM320LF2407  馈线终端装置  滤波  采样 手机看文章 扫描二维码
随时随地手机看文章

      1 引言

  随着国民经济的迅速发展,10 kV配电网络越来越复杂,配电线路越来越多,怎样监测和控制配电线路,保证配电网供电安全和稳定可靠运行成为配电自动化的关键。在配电自动化系统中,馈线自动化是配电自动化的基础,而作为馈线自动化系统中核心设备的馈线终端装置则成为配电自动化系统成功实施的关键。馈线终端装置简称FTU(Feeder Terminal Unit)[1],安装在10 kV馈电线路上,对柱上开关进行监控,完成遥测、遥控、遥信,故障检测功能,并与配电自动化主站通信,提供配电系统运行情况和各种参数即监测控制所需信息,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数,并执行配电主站下发的命令,对配电设备进行调节和控制,实现故障定位、故障隔离和非故障区域快速恢复供电功能。

  本系统采用先进的DSP技术,以TI公司的TMS320LF2407为主控制器,完成馈线终端单元的研究与设计。 TMS320LF2407采用3.3 V电压供电,减少了控制器的功耗,40 MI/s的执行速度,32 K×16位的片内程序Flash。2.5 K×16位的程序/数据片内RAM,还具有PWM通道、捕获单元、A/D转换器、4级的流水线技术和专门的16位硬件乘法器,处理速度高。适用于处理大运算量的实时任务。TMS320LF2407内部集成了大量系统资源,降低了系统的设计成本。

  2 系统硬件设计

  系统硬件设计将FTU分为上、下两层板。下层是信息采集和控制板,包括PT、CT、光电耦合器、控制继电器、串口电平转换器等组成的数据采集、数字信号控制和通信等模块;上层是CPU板,包括DSP、锁存器等组成的数据处理、开关量输入、输出等模块。这样FTU结构具有层次化、模块化,抗干扰性强并且方便系统调试。

  2.1 系统的总体设计

  系统主要分为模拟量数据采集和转换模块、开关量输入输出模块、通信模块、时钟模块、键盘显示模块、外扩存储器模块、电源模块等。系统组成框图如图1所示。

系统组成框图

  2.2 模拟信号采集与转换电路

  模拟量输入采用交流采样技术。电网中的电网电压和电流首先经过现场一次大功率PT和CT变换成为0 V~100 V和0 A~5 A的交流电量,然后再经过二次PT和CT变换成为0 V~5 V的电压信号,再经过滤波处理以消除高次谐波和噪声信号再进行功率放大,然后送人MD转换器。模拟信号调理电路如图2所示。

模拟信号调理电路

  为了实现对电流、电压以及二者之间相位关系的准确测量,采用了同步采样技术。采用两片MAX125完成模拟量输入的同步采样,从MAX125输出的数据直接输入到DSP进行处理。MAX125是具有同步采样功能的14位A/D转换器,可以消除因非同时采样引起的电流和电压的相位差。两片MAX125构成的采样电路如图3所示。

两片MAX125构成的采样电路

  各相电压的模拟量输入连接到第一片MAX125的A组的前三个通道,各相电流的模拟量输入连接到第二片MAX125的A组的前三个通道,剩余的通道上接MAXl25的输出参考电压+2.5 V,用于进行A/D自检。两片MAXl25的转换启动信号CONVST由TMS320LF2407的定时器3中断实现,两片MAX125的转换完成信号INT通过与非门接到TMS320LF2407的XINT2。DSP在中断程序中从MAXl25的RAM中读取转换结果,然后对结果进行实时处理。由于MAX125的数字信号为5 V电平,不能直接驱动TMS320LF2407的3.3 V电平,因此要通过74LVC4245进行电平转换。

  另外本系统扩展了两片IS61LV6416 SRAM存储器,由于TMS320LF2407是低压器件,因此选用低电压3.3 V供电的IS61LV6416,接线简单。一片用作数据存储器,另一片用作调试阶段的程序存储器。因为在研发调试阶段,一般把程序装载到RAM中运行,这样编程速度和效率都会得到提高。外部存储选通采用74HC32,每个或门的两个输入端接TMS320LF2407的STRB和RD、WE,如果两者都为低电平,则读写选通。在调试阶段IS61LV6416的片选信号CE与TMS320LF2407的PS连接,调试结束后,CE接高电平。

  2.3 开关量信号输入输出电路

  遥信输入的信号和遥控输出的信号都是开关量.开关量作为信号源时本身干扰比较大。本系统采用光电隔离去除干扰,设计8路开关量遥信输入信号,主要对馈电线路柱上开关的当前位置以及通信是否正常和储能完成情况等重要状态进行采集,对馈电线路保护动作情况进行遥信。开关量经过光电隔离后,直接接到DSP的:I/O口。设计3路开关量输出控制信号,控制继电器实现保护功能。

2.4 时钟电路

  由于整个系统需要定时采集数据,记录超过门限值的时间,统计总的掉电时间,因此必须具有在线系统实时时钟。本系统采用了实时时钟集成电路模块DS12887,DS12887具有秒、分钟、小时、日、星期、月和年等信息,并具有闰年补偿功能。DS12887内部带有128字节的非易失性RAM和锂电池,即使外部掉电也可以保证内部RAM内容不会丢失和内部时钟工作正常[2],这样就保证了FTU在停电时还能继续计时。因为TMS320LF2407的读写时序与DS12887的读写时序完全不同,所以把DS12887作为DSP的I/O地址上的存储器外设,利用DSP的通用。I/O端口产生DS12887的片选、读、写、使能信号。因为DS12887供电电压是5 V,所以要在它和DSP之间加电压转换器74LVC4245。DSl2887与DSP接口电路如图4所示。

DSl2887与DSP接口电路

  2.5 电源电路

  FTU电压等级较多,CPU采用3.3 V电压供电,而外围器件大多采用5 V电压供电。设计时要考虑到停电时如何工作,本设计采用了双端电源切换电路.用蓄电池作为备用电源。正常工作时FTU电源由馈线变换提供,而故障情况时则由蓄电池供电[3]。配网高压通过PT供给电源模块220 V或100 V交流输入,2 20 V/100 V交流电经过变压器、整流块和三端稳压器后转换为24 V直流电,输入到充电器为蓄电池充电。24 V直流电再经过DC-DC变换,输出±5 V电压供系统各模块使用。另外通过AS1117器件将5 V TTL电平转换为3.3 V电压。作为DSP的供电电源。

  2.6 键盘显示

  为了便于操作并具有友好的人机接口,还设计了键盘和液晶显示,用于输入各种参数以及显示系统运行状态等。采用MG-12232液晶显示模块配合键盘操作,显示相关信息,如电参量数据的显示、参数整定、故障信息显示等。采用DSP的数字I/O口模拟时序的硬件接口方案。通过软件控制DSP的I/O口实现与慢速外设的时序匹配,硬件电路简单。

  2.7 通信接口

  TMS320LF2407具有一个SCI模块,可利用该模块方便地实现CPU与RS232串口之间的通信[4]。采用MAX232作为驱动器件进行串行通信。由于TMS320LF2407采用+3.3 V电源电压供电,所以TMS320LF2407与MAX232之间需要进行电平转换,采用4N35低速光耦隔离器件进行光电隔离和电平转换控制。RS232接口主要提供一个调试接口,调试人员只需将计算机与FTU相连,就可以通过计算机的COM口读取数据或者设置工作参数。接口电路如图5所示。

接口电路

  TMS320LF20407内部集成了CAN控制器模块,可以方便地实现CAN总线通信翻,只需在DSP与CAN总线之间加上相应的驱动器和适当的抗干扰电路即可。CAN总线的数据通信具有高可靠性、实时性和灵活性,在配电网通信中得到了越来越广泛的使用。

  3 系统软件设计

  软件采用C语言编程,对实时性要求较高的部分采用汇编语言,提高运行速度。C语言开发速度快、可读性、可移植性好,DSP汇编语言有适合FFT运算的反转寻址、循环寻址等指令。

  系统软件完成的主要功能:6路电压、电流模拟量采集。8路开关量信号采集,3路开关量输出控制,系统初始化,故障判断,串口通信等。

  3.1 系统主程序流程

  为了实现FTU的功能以及硬件要求。软件设计主程序流程如图6所示。

软件设计主程序流程

  系统上电后首先初始化设置,依次对片内的外设(事件管理器EVA、EVB、I/O端口、SCI模块、看门狗等)进行初始化,从DS12887中读取当前日历时钟数据。初始化完成后打开中断,在中断中进行MD数据采集,TMS320LF2407读数据,然后进行FIR滤波,再对DSP已经采样存入DSP的信号进行运算,对各路信号进行FFT运算,计算其幅度,并存入RAM。CPU对电流进行判断。看是否超过预定值,判断是否发生故障,然后运用故障定位算法,迅速定位故障,根据上方发出的命令进行分合闸操作。通过通信程序实现与主站的通信,主要包括数据上报、整定参数值下发等。

  软件采用模块化设计,由主程序模块、中断服务程序模块和功能子模块三大部分组成。包括初始化模块、数据存储模块、显示模块、通信模块、参数修改模块等。

  主程序:

程序

      3.2 基本量计算

  采用14位A/D交流采样,每个周期进行64点采样,测量计算出电流、电压、有功功率、无功功率功率因数等。

  根据采样得到的电压u(n)、电流i(N),可以计算出电网的其他参数;功率的平均值(有功功率)、交流电压有效值U、交流电流有效值,I、有功功率P、视在功率S、功率因数cosφ。计算公式如下:

  电压、电流有效值:

公式

  此外,由于采用了同步采样技术,零序电流值可以由软件求出。将每次采样得到的三相电流数据求和即可。对于对称电网来说,其值应该为零,但实际电网并不是完全对称的,因此要判断单相接地故障,不能简单地将电流有效值和零相比较,应该根据实际电网运行设定一个整定值,这一整定值可以由FTU在正常情况下的零序电流有效值加一个裕量来得到。

   3.3 频率测量

  交流采样系统中,通常是一个周波采样N点的电量值.然后对这些数据进行处理。如果电网频率恒定,则采样间隔t=T/N(T为周期,N为采样点),而电网的频率一般都有一定的波动,所以要不断调整采样间隔。

  输入信号先滤波,然后再由过零比较器LM339整形成方波信号后作为计数器的门控信号。计数器在此门控信号有效时间内对输入脉冲的个数进行累计。计数完成后,锁存计数值并由TMS320-LF2407读取,再由软件将计数值乘以计数脉冲的周期,即可得到被测信号的周期。

  4 结束语

  本文针对配电自动化系统中的馈线终端装置,结合数字信号处理技术,研究并设计了基于TMS320LF2407的FTU,实现了DSP的外围电路,模拟量、开关量的采集电路,通信电路设计等。编写了FTU硬件电路的软件程序,实现了故障定位、隔离和供电恢复等重要功能。

关键字:TM320LF2407  馈线终端装置  滤波  采样 引用地址:基于TMS320LF2407的馈线终端装置设计

上一篇:基于DSP平台的快速H.264编码算法的设计
下一篇:ESilicon首席执行官预言ASIC产业新形势

推荐阅读最新更新时间:2024-05-02 20:46

Altera和PLDA宣布为广播市场提供音频解决方案
2007年9月11号,北京—— Altera公司(NASDAQ: ALTR)和PLDA SAS今天宣布继续扩大合作,为专业音频/视频广播市场提供灵活的解决方案。此次合作首先推出了新的知识产权(IP)内核系列,以及音频采样转换器(SRC),并为Altera Stratix和Cyclone FPGA产品系列的认证客户提供免费的IP许可。 Altera市场总监梁乐观说:“为了更好地服务于音频/视频广播市场,我们选择了同PLDA合作,因为十余年来他们一直为市场提供高质量的解决方案。与PLDA这样的高质量IP供应商密切合作,我们能够为客户提供全面的解决方案,包括FPGA、开发套件、关键任务IP内核以及某些设计服务。” PLDA业务开发副总裁
[焦点新闻]
基于ADV202的嵌入式视频压缩系统软硬件设计
国际标准化组织ISO和国际电信联盟ITU于2000年12月正式推出了JPEG2000标准,该标准采用以离散小渡变换为主的多解析编码方法,具有许多优良的特性,然而一直未获得广泛的应用。AD公司于2004年推出了能实时压缩和解压缩高质量运动图像和静止数字图像的JPEG2000编解码芯片ADV202。本文基于ADV202设计一个完整的嵌入式视频压缩系统,其中包括硬件电路设计和软件流程设计,该系统具有USB接口,支持热插拔,无需主机控制。 1 ADV202芯片介绍 ADV202是美国AD公司新近推出的一款用于视频和高带宽静止图像压缩的单片IPEG2000(ISO/IECl5444-1图像压缩标准)编解码芯片,是当今市场上惟一具有实时压缩
[嵌入式]
单片机滤波
1、限幅滤波法(又称程序判断滤波法) A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效。如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点:能有效克服因偶然因素引起的脉冲干扰。 C、缺点:无法抑制那种周期性的干扰,平滑度差。 2、中位值滤波法 A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。 B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液 位的变化缓慢的被测参数有良好的滤波效果。 C、缺点:对流量、速度等快速变化的参数不宜。 3、算术平均滤波
[单片机]
低成本、30MHz、三通道HDTV重建滤波
本应用笔记介绍如何利用MAX4382 3通道放大器构建双电源供电的低成本、三通道、三极点、低通Sallen-Key滤波器。该电路提供巴特沃斯滤波器频响特性,具有30MHz带宽,非常适合HDTV应用中的视频重建滤波。MAX4382可以在单电源供电时通过输入偏置网络提供与双电源供电配置相同的滤波特性。 在HDTV应用中,低通滤波器用于恢复RGB和复合视频(Y、Pb、Pr)信号,滤波器放置在视频DAC的后级,以消除信号中的高次谐波,也可以放置在ADC的前面,用于抗混叠滤波。MAX4382高速、三通道放大器可以用来构建这样的低通滤波器,非常适合HDTV应用。 图1给出了双电源供电时,MAX4382一个通道的典型电路,它是一个
[测试测量]
基于三线耦合结构的超宽带带通滤波器的设计
  1 引言   随着通信技术的不断发展,人们对信息系统的通讯速率和通信质量的要求越来越高。在此背景下,超宽带技术(UWB)成为目前通信领域的一个研究热点。2002年2月,美国联邦委员会授权了3.1GHz~10.6 GHz之间的频带范围应用于UWB通信。由此,作为通信系统重要组成部分的UWB带通滤波器的研究也取得了很大的发展。文献提出了一类基于高损耗材料的宽带滤波器,拥有平整的宽带特性,但是插入损耗太大。谐振环和开路枝节的结构被用来实现超宽带滤波器,但是回波损耗只有10dB用高通和低通滤波器组合结构实现带通特性。并联短路枝节用来控制带外特性。 为获得低损耗和易于加工的结构,多模带通滤波器被广泛研究。近年来,随着新材料和新结构的发展
[电源管理]
基于三线耦合结构的超宽带带通<font color='red'>滤波</font>器的设计
基于ADSP-BF533处理器的去方块滤波器的实现及优化
   引言   在已有的基于块的视频编解码系统中,当码率较低时都存在方块效应,新的视频编码标准H.264中亦是如此。产生这种方块效应的主要原因有两个:一是由于对变换后的残差系数进行的基于块的整数变换后,以大的量化步长对变换系数进行量化会使得解码后的重建图像的方块边缘出现不连续;二是在运动补偿中插值运算引起的误差使得编解码器反变换后的重建图像会出现方块效应。如果不进行处理,方块效应还会随着重构帧积累下去,从而严重地影响图像的质量和压缩效率。为了解决这一问题,H.264中的去方块滤波技术采用较为复杂的自适应滤波器来有效地去除这种方块效应。因此,如何在实时视频解码中优化去方块滤波算法,降低计算复杂度,提高重建图像质量,就成了H.264
[安防电子]
高斯滤波器在实时系统中的快速实现
     摘 要: 详细讨论了高斯滤波器在单片机系统中的快速实现方法,并给出了对于MCS-51系列单片机的具体实现程序,介绍的方法在实时控制、信号检测与处理方面有很大的实用价值。     关键词: 滤波器 快速实现 单片机 实时系统     滤波器在信号处理、信号检测、通信领域有非常重要的应用,在实时系统中,对滤波器的性能和处理速度有非常严格的要求,特别是快速实时系统中,处理速度至关重要。目前,为满足快速处理的需要,用DSP技术是理想的选择。但是,目前在实时控制系统中,大多是用单片机实现的,它不仅完成信号的采样,还需完成信号的处理和控制等功能,如果单片机系统本身可以完成信号的快速处理任务,将非常方便,我们
[应用]
基于FPGA的DDC滤波器设计与仿真
近年来,软件无线电已经成为通信领域一个新的发展方向,数字下变频技术(Digital Down Converter-DDC)是软件无线电的核心技术之一,也是计算量最大的部分。基于FPGA的DDC设计一般采用CIC、HB、FIR级联的形式组成。同时,由于CIC滤波器的通带性能实在太差,所以中间还要加上一级PFIR滤波器以平滑滤波器的通带性能。而众所周知用FPGA从事算法的开发是一件难度比较大的工作,而Xilinx公司开发的System Generator工具为算法的快速开发及仿真带来了巨大的方便。本文首先对CIC、HB、FIR滤波器的原理及设计作了简单的说明,最后用Matlab结合System generator对本文所设计的DDC滤
[模拟电子]
基于FPGA的DDC<font color='red'>滤波</font>器设计与仿真
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved