CPLD在DSP多分辨率图像采集系统中的应用

发布者:JoyfulSpirit最新更新时间:2009-04-20 来源: 微计算机信息关键字:CPLD  DSP  图像采集  多分辨率 手机看文章 扫描二维码
随时随地手机看文章

  1   引言

  视频采集系统是数字图像获取的最基本手段,是进行数字图像处理、多媒体和网络传输的前提,它可为各种图像处理算法提供待处理的原始数字图像和算法验证平台。随着图像数字化处理技术的高速发展,对图像采集的要求也越来越高,这包括对采集图像的速度、主观质量、灵活性等等的要求。针对这种发展的趋势,设计了一种基于CPLD和DSP器件的多分辨率图像采集处理系统,重点介绍了CPLD在采集过程中逻辑控制的灵活应用。

  2   系统方案设计

  根据系统要求,采取了独立采集法,采用专用图像采集芯片自动完成图像的采集,除了对采集模式进行设定外,处理器不参与采集过程,这种方法的特点是不占用CPU的时间、实时性好、适合活动图像的采集。系统设计流程如下:DSP发开始采集指令,A./D开始采集,将A/D输出的控制、状态信号接入CPLD,由CPLD控制将转换后的数字信号存储到高速大容量SRAM(ODD和EVEN)中,直到一帧图像数据存储完毕后,其间CPLD产生SRAM地址、SRAM读写信号、中断信号、总线切换信号等等;CPLD交出总线控制权,DSP占用总线从SRAM中读出图像数据进行处理。限于篇幅,本文重点介绍CPLD在数据采集中的灵活设计。系统结构如下图所示:

系统结构框图

图1:系统结构框图

  3  系统硬件设计

  本系统DSP采用TI公司生产的54x系列中的TMS320VC5416,CPLD是ALTERA公司MAX7000系列中的EPM7128A。A/D芯片选用飞利浦公司出品的SAA7111A视频A/D转换芯片,这里利用DSP多通道缓冲串行口McBSP来模拟I2C总线时序对SAA7111A进行初始化。

  3.1  数据采集的逻辑功能设计

  本设计方案通过利用CPLD控制视频采集芯片SAA7111A实现行、场数据延时[2],并分奇、偶场数据分离存放,DSP选择读取采集到的奇、偶场数据统一或分别进行处理,从而得到多分辨率图像数据。将SAA7111A产生的控制信号和状态信号与CPLD连接,即把垂直同步信号VREF、水平同步信号HREF、奇偶场标志信号RTS0、片选信号CE、场同步信号VS、象素同步信号LLC2等连接到CPLD上,CPLD通过这些控制和状态信号进行译码和产生存储地址等操作。垂直同步信号VREF的两个正脉冲之间为扫描一帧(帧扫描方式)或一场(场扫描方式)的定时,即完整的一帧或一场图像在两个正脉冲之间扫描完。水平同步信号HREF为扫描该帧或该场图像中各行象素的定时,即高电平时为扫描一行象素的有效时间。若当前图像窗口大小为640×480,则在VREF两个正脉冲之间有480个HREF的正脉冲,即480行;在每个HREF正脉冲期间有640个LLC2正脉冲,即每行640个象素,即VREF、HREF、LLC2这三个同步信号之间的关系。

  为了体现本系统多分辨率的特点,需要改变SAA7111A的默认采样分辨率,通过CPLD的逻辑控制就可以得到多分辨率图像数据。本文选择从默认分辨率720×625到设定分辨率640×480的采集,因此就需要进行、场延迟,舍弃部分像素。通过写SAA7111A中I2C寄存器行同步开始寄存器(子地址06)和行同步结束寄存器(子地址07)可以直接控制行同步有效时间,因此可以省略行延迟电路设计,而场延迟是在CPLD中实现。

  逻辑功能设计大体分为以下几个部分:DSP与CPLD的总线切换逻辑;场延迟部分(HREF的下降沿进行计数器设计);LLC2控制的SRAM地址产生部分;SRAM片选信号、写信号以及同步时钟选择时序控制部分。其中CPLD和DSP之间的总线管理是设计中的难点。图像采集时序如下图所示。

图像采集时序图

图2:图像采集时序图

  具体描述如下:置低DSP的XF引脚产生START采集启动信号,它向CPLD发出图像采集命令,当VS上升沿来临时,如果RTS0为低电平,则表明是奇场即将到来,产生ODD高电平信号,对ODD取反再与DSP输出的nPS相或后用作SRAM (ODD)的片选信号CS_ODD。在VREF上升沿时刻,启动场延迟计数器,场延迟是在CPLD中实现的,从每帧625行到480行需要舍弃145行(奇、偶场各采集240行),在CPLD中利用行同步参考信号HREF进行计数器设计(HREF<240)。场延迟结束时,置高HREF145信号,有效图像数据采集开始接受,当VREF出现下降沿时,置低HREF145信号,奇场图像采集完成;如果RTS0为高电平,则表明偶场即将到来,产生EVEN高电平信号,对EVEN取反再与DSP输出的nPS相或后用作SRAM (EVEN)的片选信号CS_EVEN,场延迟仍然利用行同步参考信号HREF进行计数器设计(HREF<240)来实现,场延迟结束时,置高HREF145信号,有效图像数据采集开始接受,当VREF出现下降沿时,置低HREF145信号,偶场图像采集完成。此外GCSWITCH信号作为CPLD选择内部时钟的控制信号,当GCSWITCH为高电平期间,表示CPLD获取总线权,系统处于图像采集阶段,CPLD内部时钟为LLC2;当GCSWITCH为低电平期间,表示DSP收回总线权,系统处于图像处理阶段,此时CPLD内部的时钟信号为DSP输出时钟信号CLOCKOUT。奇、偶场图像存储器采用了ISSI公司的l0ns级256K×16高速SRAM,LLC2时钟为13. 5MHz,即每个像素时钟大约为74.1ns,每一个LLC2脉冲产生一次SRAM地址,相对于SRAM的10ns级的读写周期来说完全可以满足要求。利用LLC2(约13.5MHz)时钟进行写逻辑时序控制设计如下图所示:

RAM

图3:RAM(ODD,EVEN)写信号时序图

  同时要注意:如果在处理完一帧图像后再采集下一帧时,图像数据已经进入了偶场或奇场,此时若开放图像采集,由于不是从图像头开始采集,所采图像将不完全,因此需要确定图像采集开始的基准。这里设计只在RTS0的上升沿才检测图像采集开始信号是否产生,这样每帧图像只在RTS0的上升沿才开始采集,即每次都从偶场开始,这样就避免了图像数据的混乱,保证图像的开始基准。另外,由于存放图像数据的SRAM(奇、偶场SRAM)地址是由CPLD控制产生的,那么如果将SAA7111A转换输出的VPO[15:0]直接存放在SRAM中,势必就会影响数据、地址的同步,导致不同的数据写入同一个地址,同一个数据写入不同的地址,从而造成读写错误。因此,考虑将SAA7111A输出的VPO[15:0]也作为CPLD的输入信号,在CPLD里通过延时作同步处理后再连接到SRAM的数据线上,这样就可以满足时序要求使数据写入正确的地址。

  3.2  总线逻辑切换设计

  在前面提到了CPLD和DSP之间的总线切换管理是设计中的难点,在数据采集过程CPLD必须掌握总线控制权,切换到数据处理过程DSP必须掌握总线控制权。为了解决这个无缝切换问题,这里充分利用DSP的保持请求信号nHOLD和保持响应信号nHOLDA来协调总线切换[3]。

  通过置DSP的XF引脚为低电平,告诉CPLD开始控制SAA7111A进行图像采集。在DSP_XF连接到CPLD为高电平(DSP_XF初始状态应该为低电平)时,CPLD产生DSP_ HOLD总线请求切换信号,该信号连接到DSP的nHOLD引脚请求DSP进入保持状态,在3个机器周期后DSP做出响应:产生nHOLDA低电平信号到CPLD,而且外部数据总线、外部地址总线和控制总线都变成高阻态。此时DSP进入保持状态,CPLD控制各总线操作;当一帧图像采集、存储完成后CPLD产生nINT中断信号通知DSP开始处理处理数据,同时并置高DSP_ HOLD引脚使得DSP的nHOLD脚也置高,并通过对CPLD编程将CPLD与SRAM连接的各个外部数据总线、外部地址总线和控制总线都置成高阻态,而在nHOLD置高3个机器周期后DSP外部数据总线、外部地址总线和控制总线都脱离高阻态,DSP进入正常工作状态,DSP置XF脚为高电平,收回总线控制权进行数据处理;

  当DSP将处理后的一帧数据传输到上位机完成后,再次置低XF脚告诉CPLD可以开始采集下一帧了,CPLD产生DSP_ HOLD使DSP进入保持状态,外部数据总线、外部地址总线和控制总线又都变成高阻态,CPLD掌握总线控制权。如此往复下去即可以解决DSP与图像采集模块的总线冲突问题,正确的切换总线逻辑保证了可以循环采集图像进行处理。

  3.3  CPLD逻辑功能仿真验证

  通过利用CPLD控制视频A/D芯片SAA7111A的图像采集过程,并利用SAA7111A的输出状态信号来控制CPLD实现图像数据储存、时序控制、地址译码等功能。这样很好地协调了行、场参考及同步信号、像素时钟、SRAM读写信号和DSP控制信号之间的时序关系,保证了对SRAM读写操作时各信号的时序配合,很好的解决了行、场延时问题,使图像分辨率从720×625过渡到640×480,并且正确生成SRAM写地址,DSP中断信号以及总线切换信号的产生。

  由于篇幅有限,故没有列出VHDL具体代码,现只给出仿真结果。仿真结果如下所示:

循环采集处理仿真图

图4:循环采集处理仿真图

  上面的循环采集处理仿真图就是实际系统工作时采集模块中各个信号的时序逻辑关系。从仿真图可以看出通过对CPLD的编程实现了多点的行、场延时,奇偶场分离存放,从而得到多分辨率的图像数据,以及DSP中断产生、逻辑总线切换信号、下一帧的开始触发信号、奇偶场对齐信号等都能满足系统时序要求。采集一帧640×480的图像约需22.75ms,可以满足实时性的要求。

  4  结论

  本文设计了一种基于CPLD的多分辨率图像采集系统,本文作者创新点:提出一种由CPLD控制图像的行、场信号延时,奇偶数据分离存储来得到不同分辨率图像数据的方法,实现了不占用DSP资源的多分辨率图像的实时采集。经过大量仿真和电路板调试,证明该方案灵活有效,能够在工业监测、医疗诊断等图像实时采集领域得到广泛应用。

关键字:CPLD  DSP  图像采集  多分辨率 引用地址:CPLD在DSP多分辨率图像采集系统中的应用

上一篇:Gartner:2009年ASIC设计数量将减少22%
下一篇:一种基于PCI总线和DSP技术的虚拟仪器设计

推荐阅读最新更新时间:2024-05-02 20:48

PC104总线与DSP数据通信接口设计
 从1982年世界上诞生了首枚DSP芯片后,经过20多年的发展,现在的DSP属于第五代DSP器件。其系统集成度更高,已将DSP芯核及外围器件综合集成到单一芯片上,DSP逐渐成为数字信号处理器的代名词。同时,数字信号处理技术在理论和算法上也取得了突破性进展,他本身也形成了比较完善的理论体系,包括数据采集、离散信号与离散系统分析、信号估计、信号建模、信号处理算法等内容。DSP技术已在航空航天、遥测遥感、生物医学、自动控制、振动工程、通讯雷达、水文科学等许多领域有着十分广泛的应用。通过数据采集系统将原始数据传送到DSP,DSP完成算法的处理是工程上的一种应用模式,数据的传送可以通过各种计算机总线来实现。   PC104是一种专门为嵌
[电源管理]
PC104总线与<font color='red'>DSP</font>数据通信接口设计
DSP与单片机的一种高速通信实现方法
  1 引言    数字信号处理 器(DSP)是一种适合于实现各种数字信号处理运算的 微处理器 ,具有下列主要结构特点:(1)采用改进型哈佛(Harvard)结构,具有独立的程序总线和数据总线,可同时访问指令和数据空间,允许实际在程序存储器和数据存储器之间进行传输;(2)支持流水线处理,处理器对每条指令的操作分为取指、译码、执行等几个阶段,在某一时刻同时对若干条指令进行不同阶段的处理;(3)片内含有专门的硬件乘法器,使乘法可以在单周期内完成;(4)特殊的指令结构和寻址方式,满足数字信号处理FFT、卷积等运算要求;(5)快速的指令周期,能够在每秒钟内处理数以千万次乃至数亿次定点或浮点运算;(6)大多设置了单独的DMA总线及其控制
[单片机]
<font color='red'>DSP</font>与单片机的一种高速通信实现方法
基于DSPCPLD的I2C总线接口的设计与实现
带有I2C总线接口的器件可以十分方便地将一个或多个单片机及外围器件组成单片机系统。尽管这种总线结构没有并行总线那样大的吞吐能力,但由于连接线和连接引脚少,因此其构成的系统价格低、器件间总线连接简单、结构紧凑,而且在总线上增加器件不影响系统的正常工作,系统修改和可扩展性好。即使有不同时钟速度的器件连接到总线上,也能很方便地确定总线的时钟。 如今,为了提高系统的数据处理精度和处理速度,在家用电器、通讯设备及各类电子产品中已广泛应用DSP芯片。但大多数的尚未提供I2C总线接口,本文将介绍一种基于CPLD的已实现的高速DSP的I2C总线接口方案。 1 I2C通信协议 I2C总线是一种用于IC器件之间的二线制总线。它通过SDA(串行
[嵌入式]
ADI公司SHARC(R)处理器助力KORG公司WAVEDRUM Mini打击乐合成器
     Analog Devices, Inc. (ADI)最近宣布,电子乐器先驱 KORG Inc.选用 ADI 公司的 SHARC®处理器(http://www.analog.com/zh/pr1129/sharc )作为其畅销全球的新型便携式打击乐合成器 -- WAVEDRUM Mini 的数字信号处理(DSP)引擎。WAVEDRUM Mini 是 KORG 于2009年推出的打击乐合成器 WAVEDRUM WD-X 的新一代、便携式、电池供电版产品,以 ADI 公司的 ADSP-21375 ( http://www.analog.com/zh/pr1129/adsp-21375 ) SHARC 32位浮点 DSP 处理器为
[嵌入式]
基于DSP的自动对焦系统
摘要:介绍了一种基于DSP芯片TMS320F206进行数值计算和实施控制的自动对焦系统。给出了系统的硬件构成和软件设计。该系统不仅充分发挥了DSP芯片的数值计算优势,而且拓展了其在人机对话和电机控制等输入输出方面的应用。 关键词:自动对焦DSP爬山搜索算法 现代社会是一个高度信息化的社会,多媒体技术的发展使图像信息的获取及其传输手段倍受瞩目。自动对焦技术是计算机视觉和各类成像系统的关键技术之一, 在照相机、摄像机、显微镜、内窥镜等成像系统中有着广泛的用途。传统的自动对焦技术较多采用测距法,即通过测出物距,由镜头方程求出系统的像距或焦距,来调整系统使之处于准确对焦的状态。随着现代计算技术的发展和数字图像处理理论的日益成熟,自
[嵌入式]
DSP的视频编解码系统的工作理念介绍
随着数字多媒体的应用日渐广泛,视频解码 在嵌入式系统设计中变成一个基本要素。视频标准有多种,依赖于产品可实施其中的一个或者多个标准。当然这不是全部,视频仅仅是多媒体码流的一部分,另外还有音频或者语音需要并行处理。因此,一个精确的处理存储或数据流的同步层是必需的。此外,视频解码本身对性能要求较高,需要不同于先前基于语音和信息应用 的系统架构;这就对便携系统提出了特殊挑战,而桌面应用同样面临这些问题。 通用视频标准和编解码器 联合视频组(Joint Video Team, JVT)由 ITU的视频编码专家组(Video Coding Experts Group, VCEG)和ISO/IEC运动图像专家组(Moving Pict
[嵌入式]
<font color='red'>DSP</font>的视频编解码系统的工作理念介绍
基于DSP的正弦信号发生器设计
正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。   目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低 频信号发生器 ,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。    系统原理   一般的采样型SPWM法分自然采样法和规则采样法,自然采样法是将基准正弦波与一个载波
[嵌入式]
基于<font color='red'>DSP</font>的正弦信号发生器设计
基于ADmC812和DSP的实时数据采集系统设计
摘 要: 本文提出了一种基于ADmC812和DSP的数据采集系统的设计方案。系统采用主从式设计,DSP 和ADmC812之间通过通用的SRAM实现数据的交换,可满足数据采集量大、运算复杂、实时性要求高的应用系统。 关键词: 数据采集系统; ADmC812; DSP; DMA 引言 ADmC812是ADI公司的以8051(8052)内核为控制核心的新型微转换器。由于ADmC812内部集成了大量的外围设备。它本身就是一个完全可编程、自校准、高精度的数据采集系统,可以取代传统的MCU+A/D+ROM+RAM高成本、大体积产品,尤其是它的高精度和高速度A/D模块,特别适应于智能传感、瞬时获取、数据采集和各种通信系统。但是,对于
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved