基于SoPC的实时说话人识别控制器

发布者:HeavenlyMelody最新更新时间:2010-09-12 来源: 电子技术应用关键字:别控制软硬件协同设计  SoPC  说话人识器  实时处理 手机看文章 扫描二维码
随时随地手机看文章

1 算法简介

    说话人识别系统主要实现建模及识别两方面功能。建模功能提取语音的特征参数并存储起来形成用户模板。识别功能提取语音的特征参数,与模板参数进行匹配,计算其距离。系统框图如图1所示。本文采用改进的DTW(Dynamic Time Warping)算法和LPCC(Linear prediction cepstrum coefficients)特征参数。

1.1 LPCC算法

    (1)分帧:语音信号具有短时平稳性[1],因此先将其分帧,再逐帧处理。

    (2)有效音检测:有效音检测基于短时能量和短时过门限率两个参数。判决时采取两级判断法:若短时能量高于高门限则判为有声;若低于低门限则判为静音;若介于两者之间,则再判断其过门限率是否高于过门限率门限,若满足则判为有声,否则为静音。

    (3)加窗:加窗可滤去不需要的频率分量,同时有利于减少LPCC算法在帧头及帧尾处的误差。本设计采用汉明窗,其表达式如下:


1.2 改进的DTW算法

1.2.1 全局约束

    图2和图3中,横轴为测试语音参数,纵轴为模板参数,单位为帧。算法以测试语音为基准逐帧进行。如图2,传统的DTW算法中,测试参数长度无法预知时全局约束便无法确定。图3为改进后的DTW,可在未知测试参数长度的情况下进行全局约束,配合帧同步算法,便于算法的实时处理。

1.2.2 局部约束

    得到当前距离后便要进行前向路径搜索。n=1指定与m=1匹配。从n=2开始,每个交叉点(n,m)可能的前向路径为(n-1,m)、(n-1,m-1)、(n-1,m-2),选出其中最小者作为当前点(n,m)的前向路径,并将该点的累加距离和加上其当前距离作为当前点的累加距离。最终在n=N处可得到若干个累加距离,选其最小者为最终匹配结果。

1.3 Matlab仿真

1.3.1 实验1:对个性信息的识别能力

    实验1的目的在于观察算法对于话者个性信息的识别能力,实验用的语音均为各话者对正确词“开门”的发音,以避免不同单词带来的影响。实验结果如图4所示,系统的等错误率(EER)为0.01,即当错识率为0.01时错拒率也为0.01。

1.3.2 实验2:对语意信息的识别能力

    实验2的目的在于观察识别算法对于语意的识别能力,实验用的语音均为同一话者对正确词及错误词的发音,以避免因不同话者带来的影响。如图5所示,在门限为1.25时得到系统的等错误率(EER)为0.01。比较实验1、实验2的结果可知,算法对语义的识别能力和对话者个性信息的识别能力相近。

1.3.3 实验3:综合测试

    实验3综合考虑了话者的个性信息及语意信息。如图6所示,在门限为1.4时,得到系统的等错误率为0.01,也即此时系统的正确识别率为99%,同时存在1%的错误识别率。

2 SoPC系统构建

    (1)CPU设置。NiosII core选定为NiosII/f。使能嵌入式硬件乘法器。复位地址设为cfi_flash,异常向量地址设定为ssram_2M,在custom instructions中添加用户自定义指令floating Point Hardware。

    (2)定时器设置。本设计使用了两个定时器。Timer用于产生内部中断采集语音样点,设其计时周期为125 μs(对应采样率8 kHz)。Timer_stamp用于插入时间标签,定时周期采用默认值。

    (3)其他外设。NiosII核中还包含以下外设:片上RAM/ROM、FLASH、SDRAM、SSRAM、按键、开关、LED、音频模块、七段数码管、LCD。

3 软件流程

    总体工作流程如图7所示。系统首先初始化,然后读出模板数据,等待用户按下按键。在此期间,用户应设置好系统工作模式(建模或识别)及话者代码。然后按下按键开始以中断方式采集语音,并运行函数主体。

    识别部分流程如图8所示。函数首先判断语音是否已经采集完毕及LPCC算法是否已经进行到最后一帧,若同时满足则结束运算,否则继续运行。若当前帧为有效音,则计算出其LPCC,并调用DTW子函数,针对各模板分别计算距离得分。运算完所有语音帧后,便可得到测试语音对各模板的最终得分,取其最大者记为当次得分。若该得分大于得分门限,则识别通过;否则予以拒绝。


    建模部分流程的前半部分与识别过程类似,不同之处在于建模过程只调用了LPCC算法。算法完成后,系统将LPCC矩阵写入对应的Flash地址空间存储。

4 软硬件协同设计与优化

4.1 软件设计与优化

    (1)将数据缓存至SDRAM。最初的程序设计中使用数组存储大型变量,后来改为将这些数据缓存于SDRAM中。改进后,在板运行速度无明显改变,但NiosII软件的运行速度及稳定性得到了提高。

    (2)用float数据类型代替double。最初的程序大量使用了双精度数据类型,但后来发现单精度浮点型已经可以满足要求,因此将数据类型改为单精度浮点型(float),使得程序运行速度提升了一倍。

    (3)用指针方式访问数组。改用指针的方式访问数组改善了程序的执行效率,运行速度有一定提升。

    (4)用读表法获取汉明窗函数。最初的程序是通过运算公式的方式得到窗函数的各个样点值的,后改用读表法,使得加汉明窗这一步骤耗时减少了98.7%,整个LPCC运算耗时因此减少了59.3%。

    (5)语音数据存储为float类型。最初的设计中,系统采集到原始语音数据后直接将其存储起来,后来改为将数据解码后再存储,使得LPCC中取语音部分的时间由888 μs降至98μs。

4.2 硬件设计与优化

    (1)用定时器中断方式采集语音。最初的设计中,系统必须在采集完所有语音数据之后才能对其进行处理。后改用中断方式采集语音,则可实现每采集满一帧语音数据便进行处理,极大地提升了处理速度。

    (2)添加用户自定义浮点指令。语音信号处理过程涉及大量单精度浮点型数据的运算,因此在CPU中添加浮点指令。加入浮点指令后,系统耗时降低了90%以上。

    本设计在算法上充分利用了DTW算法的特点,既能识别语音内容又能区分说话人,很好地完成了文本有关的说话人识别功能。同时对识别算法进行帧同步处理,为算法的实时实现打下基础。本设计在实现时采用软硬件协同设计方法,在软件和硬件上进行设计和优化,使得设计有很好的实时性。

    作品的实际测试情况是:选取门限为1.5时,系统的错识率可降至0%,此时正确识别率为90%,还有10%的拒识。识别时系统的响应时间是8.5 ms。

关键字:别控制软硬件协同设计  SoPC  说话人识器  实时处理 引用地址:基于SoPC的实时说话人识别控制器

上一篇:基于DM642的铁路路障视频报警系统设计
下一篇:德州仪器推出运行性能达 150 MHz的低功耗 DSP

推荐阅读最新更新时间:2024-05-02 21:08

基于NIOSⅡ的矩阵键盘和液晶显示外设组件的设计
 0 引言   NIOSⅡ是Altera公司推出的第二代IP软核处理器。它与其他IP核可构成SOPC系统的主要部分。Altera SOPC Builder提供有NiosⅡ处理器及一些常用外设接口,因此,对于一些库中没有提供的模块,用户就可以自己定义添加。用户还可以通过自定义逻辑方法在 SOPC设计中添加自己开发的IP核。而定制用户逻辑外设是使用NiosⅡ嵌入式软核处理器的SOPC系统的重要特性之一。   本文提出了一种针对LCD控制器和矩阵键盘的IP核的设计方法。该方法利用SOPC Builder中元件编辑器Create New Component,通过自定义逻辑方法在SOPC设计中添加自己开发的液晶显示模块和键盘IP核。该控
[嵌入式]
基于NIOSⅡ的矩阵键盘和液晶显示外设组件的<font color='red'>设计</font>
如何由单片机升级到DSP
  在过去的几十年里,单片机的广泛应用实现了简单的智能控制功能。随着信息化的进程和计算机科学与技术、信号处理理论与方法等的迅速发展,需要处理的数据量越来越大,对实时性和精度的要求越来越高,低档单片机已不再能满足要求。近年来,各种集成化的单片DSP的性能得到很大改善,软件和开发工具也越来越多,越来越好;价格却大幅度下滑,从而使得DSP器件及技术更容易使用,价格也能够为广大用户接受;越来越多的单片机用户开始选用DSP器件来提高产品性能,DSP器件取代高档单片机的时机已经成熟。   本文将从性能、价格等方面对单片机和DSP器件进行比较,在此基础上,以TI的TMS320C2XX系列DSP器件为例,探讨DSP器件取代单片机的可行性。   
[嵌入式]
SoPC与嵌入式系统软硬件协同设计
摘要 软硬件协同设计是电子系统复杂化后的一种设计新趋势,其中SoC和SoPC是这一趋势的典型代表。SoPC技术为系统芯片设计提供了一种更为方便、灵活和可靠的实现方式。在介绍系统级芯片设计技术的发展由来后,重点介绍SoPC设计系统芯片中的软硬件协同设计方法,并指出它比SoC实现方式所具有的优势。 关键词 嵌入式系统软硬件协同设计片上可编程系统(SoPC) 1 概述 20世纪90年代初,电子产品的开发出现两个显著的特点:产品深度复杂化和上市时限缩短。基于门级描述的电路级设计方法已经赶不上新形势的发展需要,于是基于系统级的设计方法开始进入人们的视野。随着半导体工艺技术的发展,特别是超深亚微米(VDSM,0.25μm)工艺
[应用]
基于SOPC的旋转LED屏控制系统设计方案
   一、引言   LED(1ight emitting diode)显示屏由发光二极管阵列构成。发光二极管(LED)是一种电流控制器件,具有亮度高、体积小、单色性好、响应速度快、驱动简单、寿命长等优点,能胜任各种场合实时性、多样性、动态性的信息发布任务,因此得到了广泛的应用。LED大屏幕是通过一定的控制方式,用于显示文字、图像行情等各种信息以及电视、录像信号,并由LED器件阵列组成的显示屏幕。LED大屏幕作为现代信息发布的重要媒体,正受到社会各界尤其是商业界、广告界的极大重视,被广泛应用于上业、交通、商业、广告、金融、体育比赛、电子景观等。   目前市场上的LED屏基本上均为平板LED屏,这种屏具有显示稳定,显示内容易
[电源管理]
基于<font color='red'>SOPC</font>的旋转LED屏<font color='red'>控制</font>系统<font color='red'>设计</font>方案
一种基于FPGA的语音录制与回放系统的设计
   0引言      随着微电子技术的发展,系统集成向高速、高集成度、低功耗发展已经成为必然,同时SoPC技术也应用而生。SoPC将软硬件集成于单个可编程逻辑器件平台,使得系统设计更加简洁灵活。SoPC综合了SoC,PLD和FPGA的优点,集成了硬核和软核CPU、OSP、存储器、外围I/O及可编程逻辑,用户可以利用SoPC平台自行设计高速、高性能的CPU和DSP处理器,使得电子系统设计进入一个崭新的模式。      该设计运用SoPC技术实现嵌入式数字化语音录制与回放。其中,介绍了在FPGA上构建WM8731的I2C总线,以及数字化语音在SRAM中的存储,并利用Matlab7.0.4软件对所采集的语音数据进行仿真。SoPC是现在
[嵌入式]
一种基于FPGA的语音录制与回放系统的<font color='red'>设计</font>
对话 TI Sitara MCU 总经理:使实时处理变得简单且实惠产品
对话 TI Sitara™︎ MCU 总经理 Mike Pienovi:使实时处理变得简单且实惠的产品 随着对电子系统边缘实时控制、智能和通信需求的不断增长,高性能 MCU 现在提供了一种简单且经济高效的解决方案。 从智能工厂到智能城市,我们日益自动化的世界要求电子产品具有更高的速度、智能和精度。例如,与人类协同工作的自动化移动机器人需要精确的电机控制来安全地在物体周围导航,并且需要更快的处理速度以进行纳秒级决策 – 这些协同工作的实现都需要相互之间的通信。 为电子系统添加高级边缘分析和高实时性响应即将变得更容易、更实惠。TI Sitara™ MCU 总经理 Mike Pienovi向我们介绍了智能联网系统需求下,影响
[嵌入式]
SOPC上实现的波形发生
引 言   SoPc可编程片上系统是一种特殊的嵌入式微处理器系统。首先,它是片上系统(SoC),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,以FPGA为硬件基础,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件系统在线可编程的功能。   IP(Intellectual Property)知识产权是SoC设计中非常重要的内容。资源复用(IP Reuse)是指在集成电路设计过程中,通过继承、共享或购买所需的部分或全部知识产权内核(IP Core)进行设计、综合和验证,从而加速流片设计过程的设计方法。IP技术包含两个方面的内容:IP核的生成和IP核的重用。本设计中采用VHDL语言,构建一个功能强大的完整DDS
[嵌入式]
基于SOPC的列车环境异物入侵监测系统研究
  随着我国经济社会的快速发展,铁路客货运输量不断增加,列车运行速度不断提高,给铁路安全监控带来巨大的压力,其中铁路异物侵限严重影响到列车的运行安全。由于列车在露天高速行驶中环境因素不可预测,轨道异物侵限可能会给行车安全带来严重后果。轨道异物是指铁道上影响到正常行车安全的障碍物,如山体滑坡、泥石流塌方等造成的道上沙石、桥梁隧道掉落的悬挂物、因报警失误仍滞留在道上作业的工务人员以及相关装备。由于铁路异物侵限检测系统的高速度、低漏检率、低误报率等要求,使传统的以软件为核心的IDS面临着越来越大的压力,仅靠模式匹配算法的改进对入侵检测速度的提高是有限的,不是解决问题的根本策略。   SOPC(System On a Programma
[测试测量]
基于<font color='red'>SOPC</font>的列车环境异物入侵监测系统研究
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved