FPGAs的DSP性能分析

发布者:chwwdch最新更新时间:2011-04-05 来源: 电子发烧友关键字:FPGA  DSP  性能分析 手机看文章 扫描二维码
随时随地手机看文章
   

    FPGA在高性能数字信号处理领域越来越受关注,如无线基站。在这些应用中, FPGAs通常被用来和DSP处理器并行工作。有更多的选择当然是好的,但这也意味着系统设计师需要一个确切的FPGAs及高端DSP信号处理器性能参数图。不幸的是,常用的参数图在这种情况下都是不可靠的。

    例如,由于数字信号处理应用程序主要依赖于乘法累加器( MAC )操作, DSP处理器供应商和FPGA供应商通常将MACs每秒最高运转速度作为数字信号处理器性能好坏最简单的评判方式。但仅仅通过MAC吞吐量来预测数字信号处理性能是有失公平的,对FPGA和DSP也一样。这里有几个原因。

    MAC计算出来的FPGA性能指数总是假设硬连线的数字信号处理部件是在其最高时钟速率运行的。在实践中,典型的FPGA设计将采用较低的速度。另一方面,使用硬连线原理并不是在FPGA上执行实现MAC的唯一方法;另外MAC吞吐量可以通过使用可编程逻辑资源和分布式算法来实现。此外,并不是所有的信号处理算法都采用MAC密集型。例如,Viterbi译码,是电信应用中的一个关键的DSP算法,并没有用到MAC系统。

    另一种用来评估信号处理性能的办法,是使用普通的DSP功能(如FIR滤波器) 。但是,这种办法也有缺点。其中一个问题是,每个供应商通常使用不同的执行方式来执行这些功能,也许是使用不同的数据宽度、不同的算法或不同的执行参数(如延迟)。这意味着,从不同的供应商得出的结论一般都没有可比性。此外,小的内核功能通常不能作为有效的FPGA基准,因为在完整的FPGA应用中执行一个功能的方法往往是完全不同于你单独执行的功能。 (相对于处理器,这些小基准通常在预测总体的DSP应用程序性能时表现不错。 )此外,经过处理器或FPGA供应商执行的基准往往缺乏独立的核查,因此工程师很难对几种设备作出比较。

    几年前BDTI公司就意识到建立独立性是日益迫切需要的,确切来说,面向数字信号处理应用采用苹果对苹果的方式来比较FPGA和处理器。 (见侧栏:什么是BDTI ?)为了满足这一需要, BDTI开发出一种新的面向应用的基准, BDTI通讯基准( OFDM )? ,这是基于正交频分复用( OFDM )接收器。

    最近BDTI用BDTI通讯基准( OFDM )来评估一些新的高性能FPGAs和DSP处理器。整套的标准测试结果和分析,现刊载于BDTI的报告“DSP的FPGAs实现:第二版”。图1显示样品归一化,赛灵思SX25和典型的高性能DSP处理器的低成本结果。

    正如该图所示, BDTI公司的标准测试结果提供了一个戏剧性的证明,在高性能DSP应用中使用FPGAs有潜在的成本优势——基于这一基准,SX25比一般的高性能DSP处理器更符合成本效益,而且不止一个数量级。

    设计人员还需要了解所选择的处理引擎,将如何影响它们的发展流程、实施工作和系统设计。出于这个原因, BDTI的报告探讨了质的因素,该因素影响决定是否使用一个FPGA ,数字信号处理,或两者兼施,并提供指导如何作出明智的选择。该报告强调的关键开放性问题,这将影响FPGA在高端的DSP应用的长期成功,如FPGA的能量效率和FPGAs的新高层次合成工具的效率。

关键字:FPGA  DSP  性能分析 引用地址:FPGAs的DSP性能分析

上一篇:DSP芯片功能的扩展
下一篇:Altera、Apical和AltaSens联合发布视频监控芯片组

推荐阅读最新更新时间:2024-05-02 21:20

NI PXI数字化仪和LabVIEW抖动分析工具包,增强传统示波器应用的灵活性和性能
美国国家仪器公司(National Instruments, 简称 NI)于近日发布NI PXIe-5162数字化仪,并更新了LabVIEW抖动分析工具包。 该数字化仪带有10位垂直分辨率和5 GS/s采样率,它的高速测量垂直分辨率是传统8位示波器的4倍。 NI PXIe-5162单个插槽中具备1.5 GHz的带宽和四个通道,适用于高通道数数字化仪系统的生产测试、研究和设备特性记述。 工程师们因此可以结合使用LabVIEW与数字化仪,以及LabVIEW抖动分析工具包中专门为高吞吐量的抖动、眼图和相位噪声测量优化过的函数库,以满足自动化验证和生产测试环境所需。 “NI PXIe-5162数字化仪结合了高速、高通道和高分辨率测量
[测试测量]
关于1000X示波器的性能分析和介绍
4通道 1000X 示波器 2019年1月8号,是德科技宣布推出4通道1000X系列示波器,最高带宽200MHz,标配网络接口,该产品的发布进一步完善了1000X产品系列,为个人爱好者、高校实验室、初创企业等提供了更合适的选择。 1000X系列示波器是是德科技入门级示波器,带宽涵盖50-200MHz,起步价仅¥2860(参考Keysight京东和天猫旗舰店)。 虽然定位为入门级,但功能丰富,其具备最高2GSa/s采样率和最高200MHz带宽,50000个波形每秒的捕获率,具体高端示波器同样先进的分析工具,如频率响应分析、模板测试、FFT和分段存储,让您能够利用有限的预算实现高性能和大品牌的结合。 这些高大上的功能可以
[测试测量]
关于1000X示波器的<font color='red'>性能</font><font color='red'>分析</font>和介绍
如何利用FPGA设计来验证和加快你的设计过程
如果处理器和现场可编程门阵列FPGA全部由同样的电压供电运行,并且不需要排序和控制等特殊功能的话,会不会变的很简单呢?不幸的是,大多数处理器和FPGA需要不同的电源电压,启动/关断序列和不同类型的控制。 幸运的是,电源管理IC集成电路 (PMIC) 能够控制目前的高级处理器、FPGA和系统,并为它们供电,从而大为简化了整个系统设计。 现在,你也许想知道哪一款PMIC可以为你的片上系统 (SoC) 供电,还有就是要这么做的话,该从哪里入手。为你的SoC和系统选择合适的电源解决方案是系统设计人员最常见的挑战之一。所以,TI推出了数款全新工具,在使用我们的PMIC时,这些工具能够简化器件选型、评估和设计。 在这些工具中,有一
[电源管理]
基于FPGA的高速定点FFT算法的实现
   引 言   快速傅里叶变换(FFT)作为计算和分析工具,在众多学科领域(如信号处理、图像处理、生物信息学、计算物理、应用数学等)有着广泛的应用。在高速数字信号处理领域,如雷达信号处理,FFT的处理速度往往是整个系统设计性能的关键所在。   针对高速实时信号处理的要求,软件实现方法显然满足不了其需要。近年来现场可编程门阵列(FPGA)以其高性能、高灵活性、友好的开发环境、在线可编程等特点,使得基于FPGA的设计可以满足实时数字信号处理的要求,在市场竞争中具有很大的优势。   在FFT算法中,数据的宽度通常都是固定的宽度。然而,在FFT的运算过程中,特别是乘法运算中,运算的结果将不可避免地带来误差。因此,为了保证结果的准确
[嵌入式]
基于<font color='red'>FPGA</font>的高速定点FFT算法的实现
利用FPGA解决TMS320C54x与SDRAM的接口问题
  在DSP应用系统中,需要大量外扩存储器的情况经常遇到。例如,在数码相机和摄像机中,为了将现场拍摄的诸多图片或图像暂存下来,需要将DSP处理后的数据转移到外存中以备后用。从目前的存储器市场看,SDRAM由于其性能价格比的优势,而被DSP开发者所青睐。DSP与SDRAM直接接口是不可能的。   FPGA(现场可编程门阵列)由于其具有使用灵活、执行速度快、开发工具丰富的特点而越来越多地出现在现场电路设计中。本文用FPGA作为接口芯片,提供控制信号和定时信号,来实现DSP到SDRAM的数据存取。    1 SDRAM介绍   本文采用的SDRAM为TMS626812A,图1为其功能框图。它内部分为两条,每条1M字节,数据宽度为8
[模拟电子]
ZigBee系统结构与射频性能分析及射频测试方法
  1 引言   ZigBee 作为将对21 世纪产生巨大影响的新技术之一,与传统网络相比,无线传感器网络是一种以数据为中心的自组织无线网络,具有可快速临时组网、网络拓扑结构可动态变化、抗毁性强、无需架设网络基础设施等特点。基于这些特点,ZigBee 被广泛应用于军事、环境监测、智能家居、建筑物状态监控、复杂机械监控、城市交通、空间探索,以及机场、大型工业园区的安全检测等领域。环境监测是无线传感器网络应用的一个方面,传感器网络在环境监测领域具有非常明显的优势,可以为实现更加准确、数据量更大、对环境影响更小的环境监测提供一个全新的手段。   ZigBee 技术以其低成本、低功耗、网络容量大、传输时延短和可靠性高等特点,在环境监测、智
[测试测量]
ZigBee系统结构与射频<font color='red'>性能</font><font color='red'>分析</font>及射频测试方法
Virtex5高性能FPGA的脉冲激光测距系统
  1 引言   传统激光脉冲时间测距系统常采用模拟电路阈值检测实现时刻鉴别。这种方法比较简单,但受脉冲幅度变化的影响较大,且对信噪比要求很高。当信噪比很低时,则无法实现测距功能。因此不用门控电路控制脉冲计数,而直接利用高速数据采集器件及计算机进行数据采集和处理,可以获得大量的回波信息。面对高速率的传输数据,高性能FPGA的接口设计便成为连接前端A/D与后端信号处理器的纽带。   2 激光测距原理   在此仅讨论脉冲体制的激光雷达。作为一种非相干激光雷达,它采用的是脉冲法测距,即利用脉冲激光器发射一个或一列很窄的激光脉冲,通过测量回波与发射主波之间的脉冲延迟时间来测量距离(即测量飞行时间法)。在灵敏度足够和不产生测距模糊
[嵌入式]
Virtex5高<font color='red'>性能</font><font color='red'>FPGA</font>的脉冲激光测距系统
DSP在卫星测控多波束系统中的应用
一、引言      卫星测控多波束系统主要针对卫星信号实施测控,它包括两个方面:信号波达方向(DOA)的估计和数字波束合成。波达方向的估计是对空间信号的方向分布进行超分辨估计,提取空间源信号的参数如方位角、仰角等。数字波束合成也称为空域滤波,主要是根据信号环境的变化自适应地改变各阵元的加权因子,在期望信号方向形成主波束,在干扰信号方向形成零陷,降低副瓣电平, 目的是在增强期望信号的同时最大程度的抑制无用的干扰和噪声,并提取有用的信号特征以及信号所包含的信息。用于测向和波束合成的算法很多,选择合适的算法来满足系统的需求是一个重要方面。另一方面,该系统对实时性有一定的要求,要求在限定时间内完成测向和波束合成权值的计算。      本
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved