基于VK3366 的DSP 异步串行通信的设计

发布者:DelightfulWish最新更新时间:2014-04-20 来源: 互联网关键字:多媒体处理  数字信号处理  DSP 手机看文章 扫描二维码
随时随地手机看文章

随着数字信号处理技术和集成电路技术的不断发展,数字信号处理器的可靠性也越来越高,应用亦越来越广。在DSP应用系统中通常需要由DSP接受上位机的控制信号或进行下位机通信,最常见的方式是采用异步串行接口RS 232或RS4 22来实现。本文的信号采集模块采用TMS320C6713B 芯片为例,但没有集成UART接口,因此进行扩展异步串口通讯芯片或者配置McBSP以实现与其他串行设备高速异步通信。本文选择异步串口扩展芯片VK3366进行扩展。

1 数据采集硬件系统设计

数据采集电路系统主要包括:数据信号处理TMS320C6713B 子系统、AIC32 音频采集电路子系统和异步串口扩展芯片VK3366系统等,其逻辑框图如图1所示。音频采集电路子系统负责采集外部语音信号,数字信号处理器TMS320C6713B子系统进行采集数据的信号处理,VK3366子系统负责系统接口扩展进行数据传输。

1.1 数字信号处理器子系统

TMS320C6713B(简称C6713)是美国德州仪器公司(TI)推出一款32位浮点型高速数字处理器DSP,它可在300 MHz的时钟频率下实现1 800 MIPS/2 400 MFLOPS的定点和浮点运算,极大满足了高速数据采集与实时控制系统对信号处理速度的要求。采用2级Cache结构,片上共有264K×8 b存储器。C6713的具有丰富的片上外设设备,已经在图像处理、数字信号处理以及自动控制等领域得到了广泛的应用。McASP接口可以外扩音频芯片,32 b的外部存储器接口(EMIF)可以外接异步设备、外扩存储器设备,并可寻址512 MB的片外存储空间,丰富的外设接口满足本次设计的要求。

基于VK3366 的DSP 异步串行通信的设计

1.2 UART芯片VK3366基本特性

异步串口扩展芯片VK3366 是成都维肯科技研制的业界首款具备I2C/UART/SPI/8 位并行总线接口的4 通道UART扩展器件,该芯片在通信系统等实时性要求较高场合有良好的应用效果。其扩展子通道的UART具备以下功能特点:每个子通道UART的波特率、字长、校验格式进行独立设置,最高提供1 Mb/s的通信速率。每个子通道独立设置工作模式,包括IrDA 红外通信、RS 485自动收发控制、9位网络地址自动识别、软件/硬件自动流量控制和广播接收等高级工作模式。每个子通道具备收/发独立的16 BYTE FIFO,FIFO的中断为4级可编程条件触发点。提供一个子通道的调制解调器控制信号。无需采用地址线控制串口扩展方式,而是通过芯片内置的协议处理器实现多串口扩展,以减少C6713通用I/O 的使用个数,降低系统布线难度。本次设计通过模式选择使VK3366实现一个8位并行数据总线与4 通道UART 串行总线数据通信相互转换的功能。

1.3 VK3366的通信接口硬件设计

数据采集电路模块中C6713B的2路SPI、I2C接口都已经被其他接口使用,因此选择C6713 的外部存储器(EMIF)接口来实现4 通道UART 串行总线数据扩展。

C6713的32位EMIF接口用于扩展外围异步设备,EMIF接口包括数据线、地址线、读/写控制信号、片选空间等。C6713 上EMIF 共提供4 个外设片选空间CE[3:0].

UART 芯片VK3366 采用3.3 V 电源供电,使VK3366 与C6713B的EMIF直接连接,无需连接额外的电平转化芯片,节约了空间。VK3366 选通信号CS 与C6713B 的CE3 直接相连,读/写信号WR,RD 与C6713B 的ARE,AWE 直接相连,从而将系统中地址0xB0000000~0xBFFFFFFF 分配给VK3366 芯片,以便按照统一编址来读/写VK3366的寄存器了。

VK3366的M0,M1引脚分别接高电平和地[1:0],即将VK3366 的主接口设置成8 位并行数据总线模式与4 通道UART串行总线数据通信模式相互转换的工作模式。复位引脚通过上拉电阻接到3.3 V电源上,平时保持该引脚工作高电平。为了保证复位的可靠性,复位信号时间要保持20 ms以上。中断引脚通过上拉电阻接到3.3 V电源上保持高电平,当全局中断产生,引脚信号变成低电平。VK3366的中断信号引脚与C6713的INT5相连。

VK3366的8位并口命令和数据是共用8位地址总线,通过其A0(数据/控制)信号引脚进行切换。4 个子通道的选择通过命令字控制,在系统中仅占用2个地址空间,无需额外的通道指示信号线。本文设计电路中使用C6713的通用I/O口GP11引脚与VK336的A0引脚相连来进行数据/地址的控制选择。VK3366 扩展模块采用11.059 2 MHz晶体振荡器。VK3366的4个子串口分别与语音模块、GPS定位模块、无线通讯模块和手持显示设备相连,具体模块电路连接如图2所示。

基于VK3366 的DSP 异步串行通信的设计

2 VK3366 异步通信软件设计

VK3366异步通信软件设计主要包括DSP 初始化、主函数、VK3366初始化和数据发送/接收等部分。C语言作为一种高级语言,具有清晰易懂、可维护性和可移植性好、通用性强等优点,尤其对算法的编写更加容易,因此本文在TI公司CCS 3.3编译环境下采用C语言进行软件设计。

2.1 DSP初始化

C6713 上电后,首先要对DSP 的EMIF 进行配置。

本设计将CE3作为VK3366的片选,代码如下:

*(int *)EMIF_CE3 = 0xffffff03;

即设置CE3部分为8位数据格式扩展,然后配置锁相环PLL 寄存器,从而在不同部分产生不同时钟,如DSP内核、内部外围控制和外部存储器接口等。

2.2 VK3366初始化

VK3366初始化主要包括以下两部分:

(1)VK3366复位

VK3366为低电平复位,复位时或复位后,各子串口处于禁止收发状态。VK3366的复位过程是通过上电后外接阻容来实现的。

(2)子串口配置

C6713B首先通过GP11口来选择寄存器地址,然后通过接口全局控制寄存器对VK3366 进行配置。

VK3366 的寄存器为6 位地址编号,地址000000~111111,其中有7 个全局寄存器、10 个子串口寄存器。

为了实现DSPTMS320c6713 对VK3366 的准确控制,应配置VK3366相应寄存器。同时要严格按照VK3366的写时序,如图3所示。读时序如图4所示。

基于VK3366 的DSP 异步串行通信的设计

基于VK3366 的DSP 异步串行通信的设计

具体代码如下:

基于VK3366 的DSP 异步串行通信的设计

实际信号处理卡电路板如图5所示。

基于VK3366 的DSP 异步串行通信的设计

3 结语

本文主要阐述了基于异步串口芯片VK3366 扩展C6713 的串口理卡中的设计与实现。使用C 语言编写VK3366的驱动程序,在CCS3.3编译器上通过编译,实现了C6713的串口扩展。本设计已在实际项目中得到应用,为DSP扩展串口通信提供了一种新的传输方式和途径。

关键字:多媒体处理  数字信号处理  DSP 引用地址:基于VK3366 的DSP 异步串行通信的设计

上一篇:基于DSP的数字图像处理系统中的抗干扰设计
下一篇:Altera与台积携手合作

推荐阅读最新更新时间:2024-05-02 23:04

JTAG口及其对F1aSh的在线编程
随着嵌入式技术的发展,在一些高端的掌上设备中,都使用了Flash芯片,如Compaq的iPAQ、联想的天祺系列等产品。但对于研发人员来说,在开发阶段需要大量的程序调试,就意味着要对F1ash进行擦除和改写的工作,因此,如何对F1ash进行在线编程是问题的关键所在。本文介绍一种通过JTAG对Flash进行的在线编程方法。 1 JTAG简介 JTAG(Joint Test Action Group)是1985年制定的检测PCB和IC芯片的一个标准,1990年被修改后成为IEEE的一个标准,即IEEEll49.1-1990。通过这个标准,可对具有JTAG口芯片的硬件电路进行边界扫描和故障检测。 具有JTAG口的芯片都有如下JTAG
[嵌入式]
DSP将成端侧AI核战主角?
随着AI不断从云向端“下沉”,端侧AI处理器核的竞争也日趋激烈,既有老牌劲旅,也有初生新贵,但总体不外乎DSP、GPU、CPU等在暗较长短,比拼的或不是性价比那么简单,背后的软件支持、生态、服务等均是考验。 端侧AI看重功耗和可扩展 从市场来看,无论是物联网、智能手机、自动驾驶汽车、安防、机器人、无人机、AR/VR等领域的设备端,无不在拥抱神经网络推理应用,不断加速端侧AI的生长。 Cadence公司IP事业部Tensilica技术营销总监Yipeng Liu对此分析说,一方面是算法发展快速,一年就可迭代多次,因而也越来越简化;另一方面以往多是浮点运算,但现在也可定点运算,这对精度和带宽也走低。 对于市场上的核战主
[手机便携]
MPEG-2信道解复用器的DSP FPGA设计
数字高清晰度电视(High Definition Television)简称HDTV,是继黑白电视和彩色电视之后的第三代电视系统。其图像细腻逼真,质量与35 mm电影相当,再配以环绕音响,使收视效果大幅度提高。它将成为21世纪的主要电视产品,具有潜在的巨大经济效益。因此,日、欧、美等发达国家都相继投入了大量人力、物力来开发HDTV系统。我国从1996年启动国家重大产业工程项目HDTV功能样机系统研究开发工程。 1 MPEG-2标准简介以及数字电视功能分析 MPEG(Motion pictures expert group)译为运动图像专家组,他是在ISO的召集下,为数字视频和音频制定压缩标准的专家组。该组织于1994年推出MP
[嵌入式]
基于DSP和Modbus总线的智能断路器控制器设计
  作为输配电网络中保护用的电力断路器(包括框架式断路器和塑壳式断路器),在设备过载、短路时,能安全、可靠地切断故障电流,防止事故扩大危及到整个输配电系统。随着科学技术的进步,人们对供配电系统的自动化程度要求越来越高,传统断路器的功能已不能满足供配电系统自动化的需要。断路器控制器正在向智能化、多功能、模块化及可通信的方向发展。对于供电系统中的多台断路器要求能实现联网通信、集中监控等功能,即第四代断路器,同时对高分断能力、多保护功能、高可靠性提出了更高的应用要求。本文着重研究和设计了一种基于DSP的Modbus总线的新型可通信智能断路器控制器,并给出结合断路器的上位监控软件的完整应用实现。该控制器不仅具有三段保护的基本功能,还能实现
[嵌入式]
东芝选用Cadence Tensilica Vision P6 DSP 提高ADAS芯片的图像识别性能
(图片来源:Cadence官网) 据外媒报道,东芝为其下一代汽车SoC选用Cadence Tensilica Vision P6 DSP IP,以满足功能安全要求。该数字信号处理器IP具有计算吞吐量高、功耗低、芯片核心区小的特点。此外,它已通过认证,能满足汽车应用的典型功能安全要求。Cadence表示,Vision P6 DSP的功效效率比CPU高3.8倍,处理能力高达 1024 GOPS,可作为卸载引擎,有效处理视觉和AI工作负载,满足精确检测和识别目标需求。 Tensilica生态系统是东芝选择的决定性因素。这家日本芯片制造商已将Cadence Xtensa Imaging Library(Xi-Lib)集成到其
[汽车电子]
东芝选用Cadence Tensilica Vision P6 <font color='red'>DSP</font> 提高ADAS芯片的图像识别性能
DSP和FPGA各显神通,应对TD-SCDMA基站成本和演进需求
由于运营商大手笔进行基础设施建设的时代已经过去,成本和灵活性成为对通信基础设施的共同要求,对于 TD-SCDMA基站 更是如此。因为采用了智能天线等先进技术,TD 基站 的容量大幅提升,但也还带来了成本挑战;另外,TD技术仍在演进之中,要求核心芯片同时提供高性能和可编程能力。这限制了初始成本高和灵活性差的ASIC芯片,为可编程 DSP 和 FPGA 带来了更多的机会。为了应对这些挑战,DSP和FPGA供应商纷纷在工艺技术和架构上进行创新,并试图踏入对方的领地。此外,可能会在TD领域兴起的Femto基站也吸引了DSP和FPGA供应商,以及一些新兴芯片供应商。 智能天线助FPGA进入TD基站射频卡 温得敏:TD L
[嵌入式]
<font color='red'>DSP</font>和FPGA各显神通,应对TD-SCDMA基站成本和演进需求
基于DSP与FPGA的全姿态指引仪图形显示系统设计
随着现代航空电子技术飞速发展以及飞机性能的提高,使得机载图形显示系统所显示的参数越来越多,同时也对画面显示质量从人机工效学的角度提出了很高的要求。要保证图形显示的连续性,显示系统必须以每秒50帧以上的频率实时刷新。传统的EADI图形处理方法是采用软件运算实现,速度较慢,占用大量的运算时间,从而使系统很难在规定的时间内完成区域填充、字符与直线旋转、反走样运算等较为耗时的运算。本文设计了基于DSP与FPGA的系统结构,采用了软硬件填充的图形处理方法,先由DSP软件完成图形轮廓生成,然后FPGA硬件图形处理器根据图形轮廓完成耗时的图形填充,使系统在实时性方面取得了很好的效果并使得系统运算资源得到了合理的分配与利用。 1 全姿态指引仪的
[嵌入式]
基于<font color='red'>DSP</font>与FPGA的全姿态指引仪图形显示系统设计
用单片机实现DSP在线调试的一种方法
通常情况下,进行DSP系统开发调试时,都要配备一片SRAM芯片作为片外程序RAM。调试时,使用相应的仿真板将程序下载到SRAM中,这样DSP系统通过运行SRAM中的程序代码来实现相应的操作。可以看到,DSP系统调试时,关键是要将程序下载到SRAM中,因此如果能将程序代码通过单片机写入 SRAM中,则同样可以完成对DSP系统的调试。下面具体介绍在不使用仿真板的情况下,如何运用单片机AT89S5l对DSP芯片 TMS320LF2407进行在线调试。 1 硬件设计 1.1 TMS320LF2407在线调试的实现过程   完成DSP系统的调试,首先要将程序的源代码写入片外SRAM中。此时,单片机与SRAM组成一个系统,单片机可将分离出来
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved