摘要:提出一种基于数字信号处理器(DSP)和直接数字信号合成器(DDS)技术的高精度扫频信号源的实现方法,着重讨论AD9834型DDS的基本工作原理、扫频波信号源的硬件结构和软件流程。关键词:商品防窃监视器(EAS);TMS320VC5410;AD9834;扫频信号源 1 引言 商品防窃监视器(Electronic Article Surveillance)简称EAS,是目前超市普遍使用的安检防窃设备。其原理是由发射电路产生7.8MHz"8.8MHz的扫频信号,该信号由近场天线发射,当天线附近有标签存在时(标签为高Q值的LC振荡回路,谐振中心频率为7.8MHz),标签发出谐振电磁波信号,该信号被EAS接收天线接收,经解调、放大和数字化处理后,最终发出报警信息。传统的扫频信号发生电路通常包含变容二极管组成的LC振荡回路,通过周期性地改变二极管的偏压来改变振荡频率。由于分立元件参数的一致性差,振荡频率难以精确控制,频率变化的线性度、扫频宽度等诸多指标也受到元件性能的严格约束。在数字化技术飞速发展的今天,由直接数字频率合成(DDS)技术产生所需要的信号波形,是EAS扫频信号发生电路发展的趋势。笔者采用AD公司的AD9834型DDS实现扫频信号合成,同时,考虑到信号的高速频率变化特点,需使用数字信号处理器(DSP)对AD9834进行控制。笔者采用TI公司的TMS320VC5410型数字信号处理器(以下简称C5410)。下面介绍这些器件的特点及电路实现方法。 2 TMS320VC5410和AD9834简介 本设计要求C5410通过多通道缓冲串行口向AD9834发送命令和数据,由AD9834产生EAS系统需要的扫频信号。C5410是TI公司生产的新一代低功耗TMS320C5000系列定点数字信号处理器,它有3个高速、全双工、多通道缓冲串行口(McBSP),每个串行口可以支持128个通道,速度可达100Mb/s。该系列提供的McBSP支持多种串行通信的方式和协议,可以根据用户的不同需要进行配置。多通道缓冲串行口遵循SPI协议是以主从方式工作的,这种模式通常有1个主设备和1个或多个从设备,其接口包括以下4种信号:串行数据输入(也称为主进从出或MISO);串行数据输出(也称为主出从进或MOSI);串行移位时钟(也称为SCK);从使能信号(也称为SS)。McBSP的时钟停止模式与SPI协议兼容,当McBSP处于时钟停止模式时,发送器和接收器是内部同步的。 AD9834的原理框图如图1所示。它使用的DDS技术是一种利用正弦信号相位线性增加的原理直接由数字累加和数/模转换合成所需频率的技术。AD9834主要由数控振荡器(NCO)、相位调制器、正弦查询表ROM和1个10位D/A转换器组成。数控振荡器和相位调制器主要由2个频率选择寄存器、1个相位累加器、2个相位偏移寄存器和1个相位偏移加法器构成,它的最高工作频率可达50MHz。 AD9834的频率控制字由式(1)求得 式中,0<Δphase<228-1,fMCLK最高可达50MHz,它是由高稳定度晶体振荡器获得或由其他器件编程提供,用来同步整个合成器的各个组成部分。 相位控制字由式(2)求得 ΔP=Kx2π/4096 (2) 式中,0 4 硬件设计方案和软件实现 4.1 硬件设计方案 基于上述设计思想的硬件连接方案如图3所示,包括C5410、10MHz晶体振荡器、AD9834及滤波放大电路。由于AD9834的电源电压在2.3V到5.5V范围内可选,C5410的电源电压为3.3V。所以在连接时无需电平转换。10MHz晶体振荡器向C5410提供输入时钟。初始化C5410使其工作频率为100MHz,因为只有此时才能使其定时器周期寄存器从TOUT引脚输出50MHz时钟信号。该时钟信号输出到AD9834的MCLK脚,作为AD9834的工作时钟。理论分析指出:输出信号的相位噪声取决于时钟信号的相位噪声,在输出信号频率不变的情况下,输入时钟信号频率越高,相位噪声恶化越小。 滤波放大电路对AD9834输出的扫频波信号进行进一步滤波处理和幅度放大,以滤除高频信号干扰和噪声,将信噪比控制在允许范围内。由于杂波信号干扰,从AD9834出来的扫频信号在没有滤波的情况下含有丰富的高频成分,采用RC或LC无源滤波电路处理后可以得到一组以8.2MHz为中心频率,扫频范围在7.7MHz"8.7MHz的较为清晰的扫频波。具体实现方案是先通过由1只去耦电容器和1只电阻器组成的RC回路滤掉由:DDS输出的扫频信号中的高频成分,然后使用带有电感器的复式滤波电路(可以选择LC滤波电路),经电感器滤波后不但负载电流及电压的脉动减小,而且波形也变得平滑,L、c的具体值可由f=1/(LC)1/2求得,其中f=8.7MHz,滤波电路如图4所示。由于AD9834的输出信号幅度最大只有O.8V,所以需将其幅值放大才能作为扫频信号源,在系统中可由1个高速运算放大器实现。 由于该电路是高速数,模混合电路,因此电磁兼容性能非常重要。特别是DSP和DDS共用1个电源,使得器件的工作信号通过电源线传输形成干扰。通常必须在电源接入处并人大容量的电解电容器和钽电容器,滤除低频噪声。还应该在每个器件的电源引脚处接1只0.01pF一0.1pF的去耦电容器。 4.2 软件实现 软件的流程如图5所示,主要包括复位、初始化、写频率字和控制字等部分。 初始化部分包括对DSP多通道缓冲串行口的初始化及其配置和对AD9834写入控制字,应设置多通道缓冲串行口工作模式和DDS的SLEEP、RE-SET、SIGNPIB、HLB等位。在该系统设计中,AD9834采用串行控制比特位方式选择相位、频率寄存器;PIN/SW=0.选择控制字模式;FSEI=0,选择使用频率寄存器0(FREQ0);D13=0,将28位的频率寄存器分成2个14位的寄存器工作,且频率字的高14位和低14位可以独立改变。由于系统要求在上电后立即工作,故将AD9834的RESET引脚接低电平。必要时,也可以由系统中的其他模块如CPID控制DDS启动。SDATA、SCLK和FSYNC 3个引脚向AD9834中写数据和控制字。当FSYNC=0时,表示正向AD9834写入1个新字,并将在下1个SCL.K的下降沿读人第1位,其余的位在随后的SCLK的下降沿读入,经过16个SCLK下降沿后,置 FSYNC=1,实现了DSP对AD9834的控制。 由于将C5410的McBSP配置为时钟停止模式,串口接收控制寄存器SPCRl的时钟停止模式位cLKSTP和串口引脚控制寄存器PCR的发送时钟极性位CLKXP配置为CLKSTP=11,CLKXP=1(时钟开始于下降沿,有延时),因此,发送时钟模式引脚设为内部时钟输出(BCLKX=I);采样率发生器时钟源来自CPU时钟(CLKSM=I);发送帧同步模式引脚设置为输出(FSXM=1);发送帧同步极性引脚设置为低电平有效(FSXP=1);发送时钟极性设置为下降沿采样 (CLKXP=1);数据发送和接收延时时间为l位(RDATDLY=XDATDLY=01b);采样率发生器时钟的降频因子为49(CLKGDV=49)。因为16xbaud rateCLKOUT/1+CLKGDV为100/49,所以MCBSP的采样率发生器产生2MHz的时钟信号。 下面是通过McBSP口向AD9834传送频率为8.2MHz的频率字和控制字的程序段: L 程序设计中应该注意的重点就是对发送和接收准备好位的查询,如果在程序中没有查询或者查询的地点不对,则程序在单步运行时可能会正确发送和接收数据,但是当全速运行时,由于速度较高,因而不能进行正确的数据收发。正确的查询应该是在数据发送前查询SPCRl或SPCR2中的RRDY位或XRDY位,当RRDY位或XRDY位为0时,表明尚未接收或发送完数据,一直查询到RRDY位或XRDY位为1,表明上一组数据已接收或发送完毕,可以进行下一组数据的接收或发送。 5 结束语 由DDS技术产生的扫频信号源不仅频率稳定、信号精度高、抗干扰能力强,而且由于它是在计算机控制下直接实现的,因而易于实现智能化处理。无论是实用电路还是测量仪器,凡是需要产生扫频信号的地方,原则上都可以使用DDS技术。在频率迅速变化的场合,DDS中寄存器更新的速度有时会成为关键指标,这时必须使用高速电路和高速串行口,由合理的硬件设计和软件流程来实现预期设计目标。
引用地址:基于DSP和DDS的商品防窃监视器扫频信号源
小广播
热门活动
换一批
更多
最新嵌入式文章
更多热门文章
更多每日新闻
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知
更多往期活动
11月15日历史上的今天
厂商技术中心