高清电视音频解码的定点DSP实现

发布者:omega34最新更新时间:2007-08-03 来源: 电子设计信息网关键字:算法  通道  数据  矩阵 手机看文章 扫描二维码
随时随地手机看文章
  数字技术的高速发展使广播电视进入了由彩色电视向高清晰度电视( HDTV) 跨越的过渡时代,音/ 视频产品数字化、高清晰度化已成为未来家电视听产品的趋势. 高清电视音频解码方案有欧洲数字视频广播(DVB) 标准采用的MPEG22 ( layer I ,layer II) 和美国A TSC 标准使用的Dolby AC23 两种. 其中DVB 标准被大多数国家接受,中国正在制定的数字电视标准同样是基于DVB 标准. 目前国内外许多公司都在从事高清电视及机顶盒芯片的研究,低成本高性能的芯片具有一定的竞争优势.音频解码是解码芯片的一部分. 作者通过对MPEG-2 多通道音频解码算法介绍及其优化,C 程序定点化,高性能媒体处理器DM642 简介, DSP/BIOS 实现实时音频解码和输出流程,完成了DVB标准的音频算法优化及DSP 移植.

  1 DVB 音频算法及改进

  DVB 音频是MPEG-2 音频解码标准的子集,它采用MUSICAM 算法进行压缩,利用给定的声音单元对位于临近频率较低声级的声音(或噪声) 有着遮蔽作用,对于听不见的声音单元不进行编码,这有利于在低数据率下进行音频编码. MPEG-2 支持多通道(5. 1 声道) 和采样率分别为16 ,22. 05 ,24kHz 的低采样率的扩展. 其中低采样率扩展只需对MPEG-1 的比特流和比特分配表进行很小的变动就可实现解码. MPEG-2 多通道扩展音频解码的帧结构见图1.

图1 MPEG-2 音频帧

  MPEG-2 音频帧由MPEG21 音频数据和多通道(MC) 音频数据组成,其中MPEG-2 附加的多声道数据放在MPEG21 的辅助数据区. 由于采用了与MPEG-1 相似的帧结构, MPEG-2 音频可以后向兼容MPEG-1 音频,即MPEG-1 音频解码器可以恢复MPEG-2 音频数据的两声道信息,而用MPEG-2解码器则可以解码完整的多通道音频数据.MPEG-2 音频解码流程如图2 所示. 其解码过程可分解为:帧分解,反量化,逆矩阵解码,子带综合滤波. 当输入比特流经过帧分解后,解码器将位分配信息、量化因子选择信息和音频样点送入反量化器恢复子带样点,子带样点经子带合成滤波器重建各声道的脉冲编码调制( PCM) 样点.

图2 MPEG-2 音频解码流程

  表1 是在DSP 平台上统计解码各步所占用的时间. 可以看出,数值计算主要集中在子带合成滤波,若采用MPEG-1 建议的算法流程[2 ] ,以两声道48 kHz 采样率为例,乘法运算量为(48 000/ 32) ×(64 ×32 + 512) ×2 = 7 680 000 次/ s. 因此,程序优化主要针对此步骤,并且对多声道音频,优化算法所减少的运算量与声道数成正比,因为子带合成滤波对于每个声道的样点是分别进行的.

  2 算法及存储优化

  首先,利用合成窗系数的对称性

  Di = - D512 - i    i = 1 ,2 .255 (不包含64 ,128 ,192) (1)

  对于特殊的点:D64 = D448 ; D128 = D384 ; D192 =D320 ; D0 = 0 ; D256 = 1.144 989 014因此只需要存储257 个点,就可以表示原来的512个点,窗系数存储量减少了一半.

  进一步对标准ISO/ IEC 11172-3附录B 的位分配表观察可知,表B2. b 是对表B2. a 的扩展,表B2. d 也是对表B2. c 的扩展,因此实际只需存储表B2. b 和B2. d ,设计读表法就可以访问4 张表格的数据,位分配表存储量也降低为原来的一半. 子带合成滤波流程见标准ISO/ IEC11172-3附录图A. 2 ,标准中规定的流程复杂,中间变量多.根据文献可以对标准里的合成子带滤波器流程简化:

  其中:Di 为窗系数; Sk 为子带样点.

  经过以上变换, 省略了中间变量U 和W . 且利用余弦函数性质,由32 点的Xi 代替64 点V i . 简化了子带合成滤波的步骤, 并使存储量减少到一半以上,为代码移植到DSP 节省了存储空间. 计算式(3) 时, 利用Byeong G. L EE 快速算法的改进算法将32 点DCT 进行分解:



  重复这样的运算,可进一步分解为更少点数的DCT ,每分解一次,乘法运算和加法运算可减少一半. 以32 点DCT 为例, 乘法和加法运算分别为1 024次和992 次. 将其分解为两个16 点的DCT后,乘法和加法次数分别减少到529 和527 次. 考虑到定点DSP 的有限字长效应,实际只需分解一次,将32 点DCT 化成两个16 点的DCT. 简化子带滤波流程以及使用快速DCT 变换后,子带合成滤波部分的运算量减少了约60 %.

  用C语言进行算法验证时,考虑到不同机器的通用性,对于解码后的PCM 样点分别采用不同的格式封装: 对于Intel 系列的机器,采用小端格式(Lit tle Endian) ,故解码后样点以wave 格式封装;对于Motorola , Macintosh 等机器,采用大端格式(Big Endian) ,因而解码后样点采用aiff 格式封装.这样解码后的音频就可直接用winamp 等软件进行播放,测试效果.

  3 定点化程序及性能分析

  实现解码时描述算法采用浮点程序,以确保精度,但速度慢. 为了在定点DSP 上实现解码,程序必须进行定点化,以有限精度实现. 定点化程序时,以浮点程序为模板,逐个将模块改造成定点. 每做完一个模块,将定点程序解码结果与浮点程序的解码结果进行比较,直到差值达到要求为止. 每个模块改造前,先估计本模块内数据动态范围,再决定采用何种精度. 其中余弦函数的定点运算通过查表法实现,即先把[ 0 ,π/ 2]间划分为212 个小格子,然后把弧度值映射到小格子上,通过查表 读取结果.为了对定点化程序进行测试,由式(8) 计算定点解码结果与浮点解码结果信噪比:

  其中:PCMfix 为定点程序解码结果; PCMfloat 为浮点程序解码结果; 65 535. 0 为两个16 位PCM 样点之差的最大值.有的文献以∑PCM2float 为分子,这样算出来的结果与特定的码流有关,若码流PCM 样点值较大,计算出信噪比则较大. 而式(8) 不受具体码流的影响,客观地对不同码流作出评价对比. 定点程序分别经过男声、女声,小提琴声,海浪声和进行曲乐声等码流测试,SNR 都在74~78 dB 范围内,获得了较好的效果.

  4 定点DSP 实现音频解码算法

  TMS320DM642 是Ti 公司最新推出的一款针对多媒体处理领域的DSP ,它在C64x 的基础上,增加了许多外围设备和接口. 频率为600 MHz 的DM642 能够以30 帧的速度同时处理多达4 个分辨率为D1 (720 ×480) 的MPEG2 视频编码译码器. 此外,DM642 还能实时进行全面的Main-Profile-at-Main-Level (MP @ML) MPEG-2 视频编码,具有32MB 外部SDRAM、4 MB 闪存、组合视频输入/ 输出、S-视频输入/ 输出、V GA 输出端口以及支持媒体流的以太网端口.

  将程序移植到DSP 上分两个阶段[6 ] : 第1 阶段,不考虑DSP 有关知识,根据DVP 改进算法编写C 程序,再在CCS 环境下调试C 程序,编译产生在C6000 内运行的代码,运用CCS 下的分析工具断点和profile 等,查找程序中运算量最大的部分,改进这部分代码性能;第2 阶段,使用DSP 提供的内联函数代替复杂的C 语言程序,使用数据打包技术,对短字长的数据使用宽长度访问,并通过消除冗余循环、循环展开等方法优化循环程序. 最后,利用DSP提供的汇编优化器,选定合适的优化选项进行编译,此步可通过线性汇编,在底层更好地利用资源.目标DSP 的乘法器为16 位×16 位,而程序中用到32 位×32 位乘法,结果为32 位. 因此采用3个16 位×16 位乘法代替,输出结果仍保留32 位.其方法为

Y32 = X132 X232 = X1low16 ?X2low16 + ( X1high16 ?X2low16 + X1low16 X2high16 ) n<<16 (9)

  经过测试,该式计算对性能没有影响.

  1) 输入控制

  DSP 解码时,将待解压缩的mp3文件转化成dat 格式的文件,DSP 可直接将dat 格式的数据加载到片外存储器中. 具体方法为,先在程序中定义一个与mp3 文件相同大小的数组,然后将dat 文件放到数组首地址所指向的区域并指定数据长度. 由于mp3 文件大小为几兆,所以定义的数组长度超过bss 段最大偏移,需定义成far 型;也可以不用far 声明数组,而将编译方式改成大模式.大模式下bss 段的大小无任何限制,但编译器对变量使用寄存器间接寻址方式,这样需要3 条指令才能加载一个变量,故对变量存取速度很慢.

  2) 输出控制:采用DSP 提供的实时操作系统

  DSP/ BIOS 实现实时输出音频. 首先在DSP/ BIOS配置工具中建立TSK 对象,并与解码函数相对应,然后指定函数优先级,DSP/ BIOS 将自动进行任务调度和执行. 在配置工具中还需指定内存分配情况. DM642 中L2 cache 和片内存储器共用,可使用芯片支持库CSL 的API 函数分配cache 及片内存储器大小. 片内存储器的一部分作为子带滤波器申诸的动态空间.

  调试时可以用LOG 对象显示解码进度, 以LOG_ printf 代替C 语言调试中的printf , 因为printf 不是DSP 中的指令,将占用大量的时钟周期,在对实时性要求很高的应用中根本无法满足要求. LOG_printf 语句可以满足实时要求. 先在DSP/BIOS 配置工具里建立一个LO G 对象,在Message窗口可实时观测程序进度,几乎不影响程序性能.DSP/ BIOS 提供两种数据传输模型,管道模型(pipe) 用于PIP 和HST 模块;流模型( st ream) 用于SIO 和DEV 模块. 管道支持底层的通信,而流支持高级的与设备无关的I/ O. 音频口输出时采用流模型,流和I/ O 设备交互的数据流向如图3 所示. 流模块(SIO) 使用驱动程序(由DEV 模块管理) 与这些设备交互. 控制输出前先进行初始化,即在DSP/BIOS 配置工具里定义一个User-Defined Devices对象, 再使用音频口初始化函数_EVMDM642 _EDMA_AIC23_init 对此对象进行初始化. 上层的API 函数即可对这个设备进行操作,通过结构体SIO_At t r s 设置设备特征.

图3 流和设备间的交互

  解码输出过程为:首先使用SIO_create 产生一个指向设备的流. 流以异步方式进行I/ O 操作,定义两个指向输出流的缓冲区用以数据交换,数据输入和输出同时进行. 当应用程序正在处理当前缓冲区时,当前缓冲区被填满,前一个缓冲区的数据则输出. 在调用SIO_reclaim 时,交替使用这两个缓冲区进行数据交换, 每次返回其中一个缓冲区的地址. 将解码产生的音频数据送到此地址, 最后调用SIO_issue 将这个填满的缓冲区地址回送给流. 输出数据流向如图4 所示. 程序中流使用指针而不以数据拷贝,减小了应用程序的开销,使应用程序更容易满足实时性要求. 通过定义合适的缓冲区大小,D/ A 输出采样,音频数据即可实现实时输出.

图4 输出数据流向

  5  结 语

  DM642 作为Ti 推出的新一代媒体处理器,具有强大的信号处理能力,可以完成实时高清信源解码. 音频解码器经过算法优化和DSP 移植优化,算法的运行速度和存储量均有明显改善. 5. 1 声道音频实时解码需要50MIPS 的运算量,给高清电视信源解码中解复用和视频解码留下足够的资源. 本系统的实现对于设计高清电视信源解码芯片具有指导意义,DSP/ BIOS 的使用为进一步在DSP 上实现MPEG-4 视频和音频算法提供了有效的设计方法.该解码器也可以应用于数字音频广播(DAB) 接收机信源解码.

关键字:算法  通道  数据  矩阵 引用地址:高清电视音频解码的定点DSP实现

上一篇:以DDS为参考的PLL在电台设计中的应用
下一篇:高清电视音频解码的定点DSP实现

推荐阅读最新更新时间:2024-05-02 20:37

西部数据寻求国际仲裁 欲阻止东芝出售存储芯片业务
腾讯科技讯 据外电报道,西部数据正寻求国际仲裁,试图阻止东芝在未经该公司同意的情况下出售其存储芯片业务。西部数据此举,旨在通过法律手段试图确保在东芝出售存储芯片业务时,获得话语权。 通过2016年斥资158亿美元收购SanDisk,西部数据成为东芝存储芯片业务的合作伙伴。受美国核电业务巨额亏损的影响,东芝决定出售存储芯片业务,以获得维系资产负债表所需的资金。东芝此前已缩小了储存芯片业务潜在买家的名单,其中包括西部数据、鸿海精密、SK海力士以及博通等。虽然西部数据参与了东芝存储芯片业务的竞购,但与财大气粗的竞争对手们相比,这家公司并不占优。 西部数据在周日发布的声明中表示,在东芝着眼于考虑出售存储芯片业务时,这家公司在未经过
[半导体设计/制造]
奥地利微电子推出12位、150ksps、微功耗A/D转换器AS1524/25
AS1524/25系列是遥感器或笔式数字化仪等对低功耗有严格要求的电池供电数据采集系统的理想选择,提供单端和全差分输入 中国,2007年5月29日 ——全球领先的通信、工业、医疗和汽车应用的模拟集成电路设计者和制造商奥地利微电子公司(SWX股票代码: AMS),新近推出12位、单通道、全差分、超低功耗A/D 转换器AS1524,以及双通道、单端、超低功耗A/D 转换器AS1525,以扩展其A/D转换器产品列表。AS1524/25系列采用3x3mm、8引脚TDFN封装,兼具超低功耗、高达150ksps的采样速率以及卓越的动态性能,可满足空间局促的应用需求,是小型电池供电设备和遥感器及笔式数字化仪等便携式数据采集系统的理想解决方案
[新品]
linux驱动移植的数据结构
对于嵌入式 Linux 系统来说,有各种体系结构的处理器和硬件平台,并且用户需要根据需求自己定制硬件板。只要是硬件平台有些变化,即使非常小,可能也需要做一些移植工作。内核移植是嵌入式Linux系统中最常见的一项工作。 内核移植工作主要是修改跟硬件平台相关的代码,一般不涉及 Linux 内核通用的程序。移植的难度也取决于两种硬件平台的差异。Linux 对于特定的硬件平台的软件就叫作 BSP(Board Support Package)。 由于 Linux 内核具备可移植性的特点,并且已经支持了各种体系结构的很多种目标板,我们很容易从中找到跟自己硬件类似的目标板。参考内核已经支持的目标板来移植 BSP,就如同使用模板开发程序。 因此
[单片机]
高准确度温度传感器和双通道电压监视器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2012 年 5 月 8 日 – 凌力尔特公司 (Linear Technology Corporation) 推出面向低压系统的高准确度温度传感器和双通道电源监视器 LTC2995。LTC2995 以 ±1°C 的准确度测量远端二极管的温度,并以 ±2°C 的准确度测量其自身的芯片温度,同时抑制由噪声和串联电阻引起的误差。该器件以 ±1.5% 的准确度监视两个电压轨 (其中一个要求在 2.25V 至 5.5V 之间以给该器件供电),这可最大限度地减小所需的系统电源裕度。LTC2995 提供一个与绝对温度成正比的电压 (VPTAT) 输出以及单独的温度过低、温度过高、欠压和
[传感器]
吉时利双通道2182A纳伏表的主要特点及优点分析
双通道2182A纳伏表用于需要稳定、低噪声电压和温度测量的应用。是可靠地、重复地表征低阻材料和器件特性的最佳仪表,并且比其他的低电压测量方案能提供更快的测量速度及更好的噪声性能。 主要特点及优点: 快速且极低噪声,15nVP-P 噪声@1s 响应时间,40-50nV p-p噪声@60s 响应时间 Delta模式测量,配合程控电流源反转极性进行低阻测试,可达24Hz和30nV P-P噪声,多次读数平均还可进一步降低噪声 与电源同步技术可提供110dB的串模抑制 (NMRR) ,将AC共模电流的影响减至最小 双通道输入,可测量电压、温度或未知电阻与参考电阻的比例 内置热电偶线性化和冷端补偿功能
[测试测量]
车辆设备中的数据采集
Kvaser公司的市场总监Michael Odalv, Kvaser 在与Kvaser合作伙伴网络各成员交流中指出汽车领域数据采集服务供应商有必要关注目前汽车行业正有将数据采集设备及应用推向新高度的趋势。 数据采集,简称DAQ,是一种广义的概念,其实质上指的是收集和存储来自各种数据源(通常指的是模拟或数字传感器等数据源)的数据用于后续分析的行为。当然,数据采集普遍应用于不同的行业,且往往贯穿行业项目的全过程,主要运用于电控系统,尤其是汽车系统的测试阶段。 就车辆,包括油电混合型汽车,公共汽车,卡车, 摩托车 ,工程或挖掘设备,农机或海洋机械等的动力系统而言,数据收集设备用于对新设备的研发过程中的验证,批量生产前一系列测试,
[嵌入式]
汽车视频应用中的LVDS数据格式和接口电路
在新型汽车电子应用中,信号格式变化最快的是视频。几年以前,车载设备中的视频显示还仅限于导航系统的小尺寸显示屏,确切地说,它只是一个导航电子装置,有些豪华型汽车借助同一显示器播放电视信号。视频信号从电视接收机到显示器输出需要传输相当长的距离,图像格式是被称为复合视频基带信号(CVBS)的模拟信号。 近几年,随着汽车电子技术的发展,对视频源、显示设备和视频传输线的研究开发取得了很大进展。例如,将导航显示器与电子系统分离开,使显示器可以安装在便于驾驶者观察的位置。这种分离需要增加视频传输线。 此外,如今汽车上安装了越来越多的显示设备,包括用于显示速度、转速、汽车状态的电子仪表盘,以及后排座多媒体播放器(乘客能够观看电视或DVD等
[嵌入式]
基于人工智能算法的换道超车功能开发
  摘要:随着汽车电气化、智能化的不断发展,汽车行驶的场景越来越趋于多样化和复杂化,从而促使汽车从辅助驾驶向智能驾驶不断创新。随着人工智能的引入,汽车智能驾驶功能越来越趋于实用,正在逐步实现向解放驾驶员双手、向车载高级驾驶辅助系统代替人脑进行复杂驾驶场景实时响应的阶段发展;高阶复杂场景智能驾驶功能则在辅助驾驶功能实现的基础上,针对驾驶员实际驾驶感受并结合人工智能算法实现向车辆复杂场景下的自动驾驶操作的方向发展。介绍了基于人工智能算法的换道超车功能开发,即通过换道条件的智能选择,使车辆以最佳方式自动完成换道超车过程。   0前言   车辆在日常驾驶过程中,经常会遇到本车道前方有慢车行驶的场景,按照驾驶员习惯,在相邻车道状况良好且
[嵌入式]
基于人工智能<font color='red'>算法</font>的换道超车功能开发
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved