基于模糊控制的迟早门同步器及其FPGA实现

发布者:Zhenai5201314最新更新时间:2008-12-05 来源: 半导体技术关键字:FPGA  模糊控制  迟早门 手机看文章 扫描二维码
随时随地手机看文章

  在数字通信系统中,必须以符号速率对解调器的输出进行周期性地采样.为此,接收器需要一个采样时钟信号,这个时钟信号的频率和符号速率相等,相位则必须保证采样时刻是最佳的.在接收器中获得这个采样时钟的过程被称为符号同步或符号定时恢复.迟早门(Early-late Gate)是实现符号同步的重要方法之一,广泛运用于各种数字通信系统中.本文提出的基于模糊控制的迟早门与传统的迟早门相比,具有同步速度快、过冲小、相位抖动小等优点.在其FPGA实现中,采用了离线计算实时查表控制的方法,并针对实际应用的情况,将控制表转化为逻辑方程,进一步简化了电路.

  1 迟早门简介

  一阶闭环平衡双积分型迟早门结构如图1所示.

基于模糊控制的迟早门同步器及其FPGA实现

  早门累加器和迟门累加器分别在两个连续的半符号周期内对输入数据的采样值进行累加,即计算前半符号周期和后半符号周期内接收到的信号的能量,它们与一个减法器共同构成了相位检测器.为了保证相位检测的有效性,采样时钟的频率必须是符号速率的偶数倍,一般至少要为8倍.如果接收到的信号为连续的0或1,那么相位误差Δe为零;如果接收到的信号中0、1交替出现,那么相位误差Δe可能不为零.误差累加器和比较器构成了一阶低通环路滤波器,相位误差累加值与一个门限值比较,产生的差值控制本地生成的数据时钟相位.相位误差累加值的符号决定数据时钟的相位是前移还是后移,每次相位调整的幅度是固定的,调整的门限值也是固定的.控制逻辑根据本地生成的数据时钟决定早门累加器、迟门累加器和误差累加器的工作时序.

  若迟早门的采样周期为Ts,数控振荡器的调整幅度为d,则由于迟早门相位调整造成的接收数据时钟的相位抖动为d·Ts.如果调整幅度d较大,则数据时钟可以很快地同步上,但是相位抖动就会比较大.如果调整幅度d较小,则相位抖动较小,但是数据时钟可能需要较长的时间获得同步.

  2 迟早门的模糊控制设计

  同步速度和相位抖动是制约迟早门性能得以提高的主要因素.为了实现较小相位抖动要求下的快速同步,可以采用自适应技术,在相位捕捉阶段使用较大的调整幅度,在相位跟踪阶段使用较小的调整幅度.本文提出了一种基于模糊控制的方法,同样可以达到自适应的效果,而且鲁棒性好、易于实现.

  基于模糊控制的平衡双积分型迟早门结构如图2所示.

  在结构上,基于模糊控制的迟早门用两个相位误差寄存器取代了传统迟早门的相位误差累加器,用一个两输入、单输出的模糊控制器取代了传统迟早门的简单比较器.该模糊控制器的输入为相位误差累加值的当前值Δe(n)和前一次计算值Δe(n-1),输出为数控振荡器的调整幅度值d.用三角形隶属度函数将输入变量Δe模糊分割为负大(NB)、负小(NS)、零(ZR)、正小(PS)、正大(PB)五种取值,模糊分割的图形表示如图3所示.输出变量d被模糊分割为负大(NB)、负中NM 、负小(NS)、零(ZR)、正小(PS)、正中PM 、正大(PB)七种取值,模糊分割的图形表示如图4所示.

  模糊控制器的控制规则表如表1所示.

  表1 模糊控制规则表相位误差Δe(n-1)

  

相位误差Δe(n) DCO调整幅度d NB NS ZR PS PB
NB PB PB PM PM PS
NS PB PM PM PS PS
ZR PM PS ZR NS NM
PS NS NS NM NM NB
PB NS NM NM NB NB

  由于模糊控制器输入变量模糊分割的相邻两个取值具有50%的交叠,所以除个别点(0、±a/2、±a)以外的精确输入值都对应两条控制规则.模糊控制器输出变量的清晰化采用重心法.

  3 模糊控制迟早门的FPGA实现

  在实际运用中,需要对接收到的1Mbps高斯最小频移键控(Gauss-MSK)信号进行符号同步,这就要求模糊控制单元的推理速度至少为1M FLIPSFuzzy Logical Inferences per Second .显然,对这样的推理速度指标,用软件在一般的通用处理器上是很难实现的.因此,模糊控制迟早门必须使用硬件来实现.FPGA是一种廉价的半定制大规模集成电路,它的开发工具可以在PC机上运行.FPGA具有密度高、结构灵活、设计时间短和可编程等优点,非常适合用于模糊迟早门的硬件验证.

基于模糊控制的迟早门同步器及其FPGA实现

  一个典型的模糊控制器通常由包含控制规则的知识库、模糊推理单元以及与外部接口的模糊化单元、清晰化单元组成.自1985年以来人们在模糊控制器的硬件实现方面已经做了很多工作,用数字电路实现模糊控制器已经有非常成熟的设计方案.这些方案将模糊控制器的四个基本单元用数字电路一一实现,模糊推理速度也可以达到1M FLIPS以上.但是在模糊控制迟早门中,模糊控制器只是其中的一部分,迟早门也只是整个接收机中的一个单元.如果采用通用的设计方案,最后实现的模糊控制迟早门占用FPGA的逻辑单元必然很多,致使整个接收机占用的芯片面积很大,而且模糊控制器在迟早门中的功能比较单一,无法实现复用.因此,模糊控制迟早门中的模糊控制器不适于用通常的设计方案.为了减小占用的芯片面积,模糊控制器采用了如下的设计思路:首先,确定输入输出精确量的比特数;然后离线计算模糊控制表,即获得一张输入输出精确量之间的真值表;最后,将这张真值表化简为逻辑方程.这样,模糊控制器就可以用简单的组合逻辑来实现.获得逻辑方程后,可以用硬件描述语言编写程序,然后在FPGA开发系统中对编好的程序和描述迟早门其它部分的程序进行编译.如果编译成功,FPGA开发系统会生成一个FPGA芯片的配置文件,将这个配置文件通过配置电缆下载到芯片里,就能最终得到一个实现模糊控制迟早门的芯片.

  基于模糊控制的迟早门已经在Altera公司的EP20KE200EFC484-2X芯片上得到了成功验证,并运用到Bluetooth基带处理器中.Bluetooth每个基带数据帧头部只有4个供同步用的比特,也就是说,基于模糊控制的迟早门可以在4个比特的时间内实现同步,无需增加额外的同步比特.

  基于模糊控制的迟早门由于在控制回路中引入了模糊逻辑,从而在迟早门的同步速度和相位抖动之间取得了很好的折衷,其性能要明显优于传统的迟早门.在模糊控制迟早门的FPGA实现中采用了离线计算和将控制表转化成逻辑方程的方案,在不影响模糊控制功能的情况下尽可能地降低了由于引入模糊控制而导致的硬件逻辑资源的增加.

关键字:FPGA  模糊控制  迟早门 引用地址:基于模糊控制的迟早门同步器及其FPGA实现

上一篇:多分辨率图像实时采集系统的FPGA逻辑设计
下一篇:基于FPGA的直接数字频率合成器的设计和实现

推荐阅读最新更新时间:2024-05-02 20:43

FPGA与ARM核结合实现功能互补
随着FPGA技术的不断发展和创新,使RISC处理器与FPGA集成、两种系统的融合与优化成为新一代FPGA的发展趋势。 如今,FPGA技术正处在高速发展时期,芯片规模越来越大,集成度越来越高,速度不断提高,性能不断提升,功耗也越来越低。FPGA凭借其强大的并行信号处理能力,在应对控制复杂度低、数据量大的运算时具有较强的优势。但是在复杂算法的实现上,FPGA却远没有32位精简指令集计算机(RISC)处理器灵活方便,所以在设计具有复杂算法和控制逻辑的系统时,往往需要RISC和FPGA结合使用。这样,电路设计的难度也就相应地增加。 RISC和FPGA结合成发展趋势 RISC处理器与FPGA集成,减小了硬件电路的复杂性和体积,降低了功
[单片机]
高云半导体的蓝牙FPGA模组获得欧盟CE认证
中国广州-全球增长最快的可编程逻辑公司广东高云半导体科技股份有限公司(以下简称“高云半导体”)的BLE(Bluetooth Low Energy Radio)模块获得欧盟的CE-RED(全称Radio Equipment Directive)认证,使开发人员可以快速轻松地将GW1NRF-4 µSoC FPGA BLE模块整合到最终产品中。 2019年年底,高云半导体发布了首款带有集成BLE模块)的GW1NRF-4 FPGA,该器件提供4.6k LUTs,内部集成一个32位低功耗的ARC处理器和一个蓝牙BLE模块,封装为6x6mm的 QFN。为了给客户提供更完善的解决方案,高云半导体正在生产经过认证的GW1NRF BLE模
[物联网]
高云半导体的蓝牙<font color='red'>FPGA</font>模组获得欧盟CE认证
基于FPGA的宽带数字信道化接收机的设计
现代电磁信号环境越来越复杂密集,要求电子战接收机必须具有很宽的处理带宽、高灵敏度、大动态范围、多信号并行处理和大量信息实时处理的能力。而数字信道化接收机不仅可以较好地满足上述要求,还可实现监视信道内信号的全概率截获。   数字信道化过程是宽带数字接收机的核心,目前广泛采用基于多相滤波的数字信道化结构。这种结构先用高速的模数转换器(A/D)进行数据采样,得到的高速数据流经抽取降低数据速率后进入多相滤波器组,该滤波器组是由一个原型滤波器调制到多个支路。现场可编程门阵列(FPGA)中丰富的乘法器、锁存器及数字信号处理算法IP核等资源,可以非常灵活地实现宽带数字信道化接收处理算法。本文采用基于多相滤波器的结构实现了一种高效高速的宽带数
[嵌入式]
基于<font color='red'>FPGA</font>的宽带数字信道化接收机的设计
集成式比特误码率测试仪的原理、功能及在FPGA芯片调试中的应用
随着高速数字系统的发展,高速串行数据被广泛使用,内嵌高速串行接口的FPGA也得到大量应用,相应的高速串行信号质量的测试也越来越频繁和重要。通常用示波器观察信号波形、眼图、抖动来衡量信号的质量,Xilinx提供的IBERT(Integrated Bit Error Ratio Tester)作为一种高速串行信号测试的辅助工具,使得测试更便捷,其具有不占用额外的I/O管脚和PCB空间、不破环接口信号的完整性、无干扰、使用简单和价格低廉等特点。 1 IBERT简介 IBERT是Xilinx提供用于调试FPGA芯片内高速串行接口比特误码率性能的工具,具备实时调整高速串行接口的多种参数、与系统其他模块通信及测量多通道误比特率等功能,支持
[测试测量]
集成式比特误码率测试仪的原理、功能及在<font color='red'>FPGA</font>芯片调试中的应用
京微雅格发布国内最高性能FPGA CME-M7(华山)系列
京微雅格(北京)科技有限公司(以下简称“京微雅格”)今日宣布推出基于CAP(Configurable Application Platform,可配置应用平台)构架的高集成化CME-M7现场可编程门阵列(FPGA)系列产品。CME-M7在日益成熟的CAP架构上首次整合了ARM Cortex-M3内核,辅以片上存储器,AD转换器,DSP 及大容量可编程逻辑,以单芯片的形式解决客户可编程芯片与嵌入式处理器之间无缝连接问题,实现了高性价比的创新。 高集成化的CME-M7 FPGA系列产品为客户在扩展处理器程序与数据存储器时不得不面临增加PCB面积与成本的风险之外提供了另一种安全有效的解决方案,凭借先进的封装技术,CME-
[嵌入式]
京微雅格发布国内最高性能<font color='red'>FPGA</font> CME-M7(华山)系列
基于FPGA的超声波气体流量计中AGC的实现
   1 引言   超声波流量计是一种新兴的工业产品,具有无阻挡体,无可动件,无压损,无示值漂移,适用于大口径管道测量,测量精确度高,重复性强,量程比宽,可承受工作压力高,可测多相流,不受气体温度、压力、组成等变化的影响、易于实现数字通信等优点。为减小甚至避免流速分布对流量计精度带来的影响,超声波流量计采用多声道超声波的测量方式。   对于多声路超声波流量计,发射和接收电路是公用的,通过传感器切换电路测量转换各个声路顺流和逆流传播时间,但由于各个声路的长度不同,传感器的特性存在差异,每次测量的接收信号大小也不同,并且强度也不稳定。因此,要实现超声波信号的精确测量,必须根据接收信号的强度自动调节接收电路增益,而且要单独控制每个方
[嵌入式]
基于<font color='red'>FPGA</font>的超声波气体流量计中AGC的实现
一种FPGA能耗优化的方法设计
 能耗给设计带来的限制可能比任何一个其他因素都多。随着一个新概念的不断发展,平衡新功能和能耗效率成为一个首要问题。   控制,并降低电子设计的能耗将使整个产品的开发流程受益。这样可以将一个不合适的产品改进以适应市场,更能为成本和制造上带来巨大变化。举例来说,一个低能耗的设计使用更小的电源,更少的元件,和一个更小的外壳。这样可以减低设计的复杂程度,并最终降低产品的成本。   让电子产品的设计符合电源要求需要各个方面的配合。系统工程师,软件工程师,嵌入式工程师,和板级布线工程师都需要对设计工具和方法加以考虑来达到目前的能耗目标。新技术设计流程和市场趋势给工程师带来了新的挑战,而我们也要对产品开发系统做出改变。   新的困境   能
[嵌入式]
一种<font color='red'>FPGA</font>能耗优化的方法设计
基于跟踪微分器的一级倒立摆模糊控制策略
引言 倒立摆系统具有多变量、非线性和强耦合等特点。姜九龙等提出的使用自抗扰解耦控制方法对倒立摆系统具有良好的控制效果,但是在自抗扰控制过程中跟踪微分器(TD)、扩张状态观测器(EsO)、非线性误差反馈器(NLsEF)需要整定的参数有10种之多。而PID控制法虽然简单易用,但存在超调量大、鲁棒性能较差的缺陷。李庆春采用模糊PID控制方式,虽然其效果相比PID控制法有较大的进步,但仍存在抗抖动性能差、快速性欠佳等缺点。因此,本文借鉴自抗扰控制技术,选择跟踪微分器和非线性误差反馈器,并引入模糊控制理论在直线一级倒立摆装置上进行实验。 1直线一级倒立摆数学模型 本文选择某公司生产的便携式直线一级倒立摆作为实验对象,运用牛顿-欧拉方法建
[嵌入式]
基于跟踪微分器的一级倒立摆<font color='red'>模糊控制</font>策略
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved