基于双DSP的雷场侦察图像实时压缩存储方法

发布者:breakthrough2最新更新时间:2010-09-03 来源: 国外电子元器件关键字:FPGA  DSP  实时压缩 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  以直升机(有人机或无人机)为平台,利用可见光成像和红外成像传感器技术,可以昼夜进行远距离、大面积雷场侦察及其他障碍体系的侦察。当机载雷场侦察系统执行任务时,系统对接收的雷场图像进行GPS标定,同时将标定的图像实时压缩、存储和传输。该系统具有极高的实时性要求。因此,考虑在系统中采用双DSP和复杂可编程逻辑器件(CPLD)为核心来构建高速处理体系。一方面,采用双DSP体系结构可以使系统具备极高的运算处理速度,满足实时性要求,另一方面,CPLD的引入使系统的灵活性得到了很大的提高。将二者结合可使该系统充分体现新一代图像压缩系统更快速、更灵活的特点。

  2 TMS320C62XX系列DSP的特点

  根据图像压缩和存储系统的特点,采用美国德州仪器(TI)公司的TMS320C62xx系列定点DSP作为核心处理器。其主频为200 MHz~300 MHz,数据处理能力为1600 MI/s~2400 MI/s。它的主要特点如下:

  (1)DSP内核采用超长指令字(VLIW)体系结构,8个功能单元共用32个32 bit通用寄存器,最多可在一个周期内同时执行8条32位指令, 
从而大大提高了程序的执行速度;

  (2)电路内部集成了l Mbit~7 Mbit片内SRAM,分为内部程序/Cache存储器和内部数据/Cache存储器,不存在片内存储器与外部存储器的总线竞争和访问速度不匹配问题,因此访问速度快,可以充分利用DSP强大的数据处理能力;

  (3)具有32 bit外部存储器接口(EMIF),外部存储器可寻址空间高达52 MByte。可与SDRAM和SBRAM实现无缝连接,用于大容量高速存储。其直接异步存储器接口可与SRAM和EPROM连接,用于小容量数据存储和程序存储。

  3 系统硬件设计

  按功能划分,图像压缩及存储系统包括图像采集模块、GPS数据采集模块、CPLD逻辑控制模块、双口RAM+双DSP图像处理模块、图像实时存储模块和压缩数据输出模块。

  为满足系统实时性要求,整个系统的设计使用3个DSP,其中1个用于压缩数据的实时存储,2个采用级联方式工作的DSP用于雷场图像的实时压缩和传输。系统结构如图l所示。

系统结构

  DSPl接收成像设备产生雷场图像数据和GPS定位系统产生定位数据,并根据GPS定位数据标定雷场图像,然后对标定后的图像进行实时压缩。DSP2对压缩后的雷场图像依次进行量化重排、信源编码和信道编码,并将编码后的图像通过数传机发送到地面。DSP3主要负责控制压缩数据的实时存储。[page]

  3.1 图像采集模块

  本系统采用图1所示的DSPl的EMIF来实现与可见光成像传感器和红外成像传感器之间的通信,采集雷场的可见光图像和红外图像信息。由于DSPl的EMIF接口是32位,而图像数据的输入字宽为8位,为了充分利用DSP的资源,使系统满足快速传输处理的要求,设计时在传感器和DSPl之间使用4个8位异步FIFO存储器作为图像数据的输入缓冲。FIFO与EMIF之间的硬件接口如图2所示。

  图2中的控制逻辑通过图l的CPLDl来实现。CPLD1根据系统所需要的时序,控制产生EMIF的片选信号(CEn)、异步输出允许信号(AOE)、异步写允许信号(AWE)、异步读允许信号(ARE),同时通过接收FIFO的空标志(EF)、满标志(FF)及半满标志(HF)来产生DSP的中断信号(INTx、INTy、INTz),从而实现4个异步FIFO的读写操作。

控制逻辑通过图l的CPLDl来实现

  3.2 GPS数据采集模块

  通过各种光学设备拍摄到的雷场图像必须标定上相应的地理坐标信息才能使其具有实际意义。因此,系统的输入数据除了雷场图像数据外还应包含相应的GPS定位数据。

  由GPS定位系统根据伪距差分定位原理计算出的GPS定位数据按照整秒输出,输出接口为RS-232型串行接口。TMS320C62xx系列DSP带有3个多通道缓冲串口(McBSP0——McBSP2),考虑到McB-SP串口的电气特性与RS-232串口的电气特性之间存在差异,设计时在DSPI的McBSP接口上外接1个RS-232收发器,以便实现串口通讯,接收GPS定位数据。

  3.3 CPLD逻辑控制模块

  为了协调系统中每个功能独立的电路高效率工作,使用了2个复杂可编程逻辑器件(CPLD)控制DSP内部多段内存空间的访问,并管理DSP与双口RAM和FIFO之间的访问时序。

  此外,由于光学设备的数据输出字宽为8位、TTL电平,而DSP的EMIF接口是32位、LVTTL电平。因此,CPLD还必须通过控制相应的接口电路来解决因光学设备与DSP之间的接口差异而产生的问题,从而保证整个系统有序、高效的运行。[page]

  3.4 双口RAM+双DSP图像处理模块

  作为图像压缩和存储系统的核心,图像处理模块以双DSP为运算处理核心单元,并辅以双口RAM实现2个DSP之间的高速通信。2个DSP的外部存储器接口EMIF与双口RAM之间的接口设计如图3所示,图中的双口RAM采用的是32位异步RAM。

2个DSP的外部存储器接口EMIF与双口RAM之间的接口设计

  在图3所示的2个DSP中,DSPl的功能如下:

  • 接收雷场原始图像数据和GPS定位数据;
  • 对雷场图像数据进行GPS标定;
  • 通过EXBUS将GPS标定后的图像存储到硬盘上;
  • 使用快速离散余弦变换(FDCT)对GPS标定后的雷场图像进行实时压缩;
  • 将压缩数据通过外部存储器接口EMIF和双口RAM传送给DSP2。
  • DSP2的主要功能如下:
  • 通过外部存储器接口EMlF和双口RAM接收来自DSPI的压缩数据;
  • 将压缩数据量化重排;
  • 对量化重排后的压缩数据进行信源和信道编码;
  • 将编码后的数据通过数传设备发送给接收站。

  作为2个DSP之间高速通信桥梁的双口RAM是一个共享式多端口存储器,它配备2套独立的地址线、数据线和控制线,允许2个独立的DSP同时异步地访问存储单元,从而实现存储数据的共享,大大提高了2个DSP之间的通信速

度。

  双口RAM内部的访问仲裁逻辑通过控制同一地址单元访问的时序、合理分配存储单元数据块的访问权限、有序调度信令交换逻辑(例如中断信号)等手段来管理2个DSP对双口RAM的读写操作,从而实现DSPI和DSP2对存储器内共享数据的有序访问。

  2个DSP虽然能通过双口RAM进行高速通信,但其控制功能不强,因此系统中需要采用如图1所示的2个CPLD协调DSPl和DSP2对双口RAM中共享数据的访问,从而实时快速地实现雷场图像数据的标定、压缩、存储和传输。

  3.5 图像存储模块

  原始图像数据经过GPS标定后进行存储,作为地面接收的雷场图像数据的备份。由于光学设备所拍摄的雷场数据具有低空、大速高比、高分辨率的特点,是海量数据,因此,必须使用硬盘进行存储。为了避免图l所示的DSPI内部硬件资源发生冲突,使用DSPI的EXBUS作为图像存储数据输出的接口。

  经过GPS标定的雷场图像数据通过DSPl的EXBUS接口首先输出到FIFO中缓冲,然后分别通过DMA控制器和接口控制器将压缩数据存储到硬盘上。对硬盘的控制采用DSP3和专用SCSl接口控制器来实现数据的存储。EXBUS与异步FIFO之间的硬件接口如图4所示。

EXBUS与异步FIFO之间的硬件接口[page]

  3.6 压缩数据输出模块

  经GPS标定的雷场图像数据在使用特定的算法压缩后,必须传送到地面进行后期分析处理。压缩数据经过DSP2编码后,通过DSP2的EMIF传送到FIFO中缓冲,然后通过总线驱动送到数传设备,传至地面接收站。FIFO存储器采用IDT72V06型异步FIFO存储器,总线驱动器采用SGS-THOMSON公司的HC245型总线驱动器。

  4 图像压缩算法设计

  图像压缩算法效率的高低直接影响整个系统的实时性,因此,选用合适的图像压缩算法具有至关重要的意义。

  该系统采用基于FDCT变换的图像压缩算法,该算法能够在图像质量比较好的情况下取得较高的压缩比,且计算量适中,能够满足图像实时压缩的要求,其软件流程如图5所示。图5中上部虚框内的算法由DSPl执行,下部虚框中的算法由DSP2执行,中间数据通过双口RAM传递。

软件流程

  由于压缩过的数据具有非常低的冗余度,因此在信源编码时须适当插入RoI(Restart of Interval)标志,增强压缩数据的抗误码能力,避免发生误码扩散。

  此外,为提高通信的可靠性,在编码中还要加入信道编码。考虑到卷积码的前向纠错能力和实时性较好,选择卷积码作为信道编码。从理论上讲,卷积码的约束度越长纠错能力越好,但是约束度越长,译码时间也会相应变长。因此,在设计时必须从实时性出发,选择合适的卷积码约束度,从而保证数传设备的误码率纠错能力能够满足系统的实时性、可靠性和抗干扰性要求。

  5 结束语

  该系统利用TMS320C62xx系列DSP的快速数据处理能力和双口RAM的高速数据传输能力,对光学传感器拍摄到的大面积雷场图像进行快速GPS标定,并对标定后的图像进行实时压缩、存储和传输,可满足机载大面积雷场侦察系统的实时性要求。

关键字:FPGA  DSP  实时压缩 引用地址:基于双DSP的雷场侦察图像实时压缩存储方法

上一篇:一种以CPLD为核心处理电路的数字电压表设计
下一篇:基于DSP的JPEG图像压缩的设计与实现

推荐阅读最新更新时间:2024-05-02 21:08

下一代MachXO3D FPGA 让汽车更安全
我们生活在一个高度互连的世界,很容易受到各种来源的网络攻击。仅2018年,硬件攻击让超过30亿系 统暴露在数据盗窃、非法操作和其它安全隐患中1。 在汽车领域,如今的智能联网汽车则加剧了这类安全问题。若网络攻击造成汽车失控不仅会对目标车辆中 的人员造成伤害,更有可能危及附近的车辆、行人和财产。 因此,汽车的设计人员和厂商正极力寻找保障系统安全之道。正如本文所述,解决方法之一是采用莱迪思 半导体的MachXO3D™ FPGA。 老式汽车时代已经过去 汽车市场在不断演变,近些年来的变化尤其剧烈,变化速度极快。 以微处理器单元(MPU)和微控制器单元(MCU)为主的计算器件在20世纪七八十年代晚期开始应用于汽 车。起初,这些
[嵌入式]
下一代MachXO3D <font color='red'>FPGA</font> 让汽车更安全
数字信号处理架构下FPGA,ARM,DSP的对比
从数字信号处理架构来对比FPGA,ARM,DSP的优势,使用Theano,Python,PYNQ和Zynq开发定点Deep Recurrent神经网络,如何在 Zynq UltraScale+ MPSoC 上实现 Linux UIO 设计。 基于Xilinx FPGA的视频图像采集系统 可编程逻辑实现数据中心互连 使用系统优化编译器加速汽车电子产品设计 如何高效的编写Verilog HDL——进阶版 基于FPGA的HDMI高清显示接口驱动 使用系统优化编译器加速汽车电子产品设计 FPGA仿真篇-使用脚本命令来加速仿真二 1.内容概要 信号处理系统一般不单单是模拟信号或者数字信号,一般两者都会有。信号的处理关注的是信号以及信
[单片机]
数字信号处理架构下<font color='red'>FPGA</font>,ARM,<font color='red'>DSP</font>的对比
基于DSP的智能视频监控图像处理电路模块设计
  系统是采用TI TMS320C6211芯片处理通过摄像头拍摄并经过A/D转换后的图像。DSP对图像进行压缩后,由DSP的HPI口通过TI的PCI2040芯片上传到上位机主板上,与上位机的PCI总线进行通信。系统设计中关键是视频处理卡的设计,由于市场上能够买到的视频卡一般功能都有限,不能满足本项目的需求,故自行设计一块视频卡。   本监控系统采用一片TI的TPS3307-33D作为电源检测IC。该器件定义在其供电1.1V时其/Reset即可输出有效的信号。如图4所示,在本系统中,该电路可以完成对5V、3.3V和1.8V三种供电电压的监测,并可以对系统的三种器件(C6211、EPLD和 AT89C2051)同时进行上电复位和手工复
[电源管理]
基于<font color='red'>DSP</font>的智能视频监控图像处理电路模块设计
基于DSP Builder的脑电信号小波处理
   1 引言   脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,具有重要的临床诊断和医疗价值。南于脑电信号自身具有非平稳性随机的特点,因此,对其实时滤波具有相当难度。自从Berger 1929年发现脑电信号以来,人们采用多种数字信号处理技术处理分析脑电信号,由于传统的滤波去噪方法所用滤波器一般具有低通特性,因此采用经典滤波法对非平稳信号去噪,降低噪声,展宽波形,平滑信号中突变尖峰的成分,但可能损失这些突变点携带的重要信息,而傅里叶频谱分析仅是一种纯频率分析方法,该方法对时变的非平稳脑电信号无效。   与传统的傅里叶变换相比较,小波变换是一种多尺度信号分析方法,具有良好的时频局部化特性,非
[嵌入式]
关于C64x+ DSP高速缓存一致性分析与维护
高速缓存(CACHE)作为内核和低速存储器之间的桥梁,基于代码和数据的时间和空间相关性,以块为单位由硬件控制器自动加载内核所需要的代码和数据。如果所有程序和数据的存取都由内核完成,基于CACHE的运行机制,内核始终能够得到存储器中最新的数据。但是当有其它可以更改存储器内容的部件存在时,例如不需要内核干预的直接数据存取(DMA)引擎,就可能出现由于CACHE的存在而导致内核或者DMA不能够得到最新数据的现象,也就是CACHE一致性的问题。 C64x+ 存储器架构 德州仪器(TI)公司对高性能C64x核进行了改进,使其性能大副提升,称之为C64x+DSP核。C64x+系统的存储器框图如图1所示。存储器被分成了三级:第一
[手机便携]
一种基于NiosⅡ的可重构DSP系统设计
  为了解决传统 DSP 所面临的速度低、硬件结构不可重构、开发升级周期长和不可移植等问题,本文应用Altera公司推出的 NiosII 嵌入式软核处理器,提出了一种具有常规 DSP 的 NiosII 系统功能SOPC解决方案。由于可编程的 NiosII 核含有许多可配置的接口模块,用户可根据设计要求,利用QuartusII和 SOPC Builder对NiosII及其外围系统进行构建。用户还可通过Matlab和 DSP Builder,或直接用VHDL等硬件描述语言,为NiosII嵌入式处理器设计各类硬件模块,并以指令的形式加入到NiosII的指令系统中,使其成为NiosII系统的一个接口设备,与整个
[嵌入式]
新日本无线(NJR)推出适用汽车音响的DSP
新日本无线(NJR)开发了适用汽车音响的DSP── NJU26209,该产品主要特点是采用了Dolby的汽车音响用程序系统DAEP。 近年来的汽车音响,多采用5.1ch或6ch等数个扬声器,因会有听者所在的位置离前后扬声器间距不均,或者听者座的位置不一定等情况,所以为解决车内发出声音的位置和环绕音效效果的不稳定等问题,就需要汽车音响用DSP。而NJU26209即是在这样的背景下开发、配备Dolby之Pro LogicⅡDAEP程序系统的汽车音响用DSP。 该产品可透过Dolby的Pro LogicⅡ程序,把立体声输入讯号制成5.1ch环绕讯号,并且用DAEP的Center Image Control性能,
[嵌入式]
德州仪器亚洲区总裁程天纵在2006年中国国际消费电子展上发表精彩演讲
阐述通信与娱乐时代的发展之势 : 融合–未来通信与娱乐时代发展的主旋律 北京讯 日前,德州仪器 (TI) 亚洲区总裁程天纵先生 在青岛举办的 2006 年中国国际消费电子博览会 ( SINOCES 2006) 上发表主旨演讲, 深入探讨了无线技术及其产业环境,以及消费类电子未来发展的趋势 ,并且阐述了数字信号处理( DSP)和模拟技术等半导体创新科技对未来数字生活的深远影响。 在 7月7日国际消费电子产业发展论坛的主题峰会上,程天纵先生以“融合-未来无线技术和产业环境”为主题,精辟分析了未来整个产业的发展趋势和机遇。他谈到:“当前无线通信与消费类电子应用正在融合,例如,手机中移动电视及数字
[焦点新闻]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved