FPGA全局时钟资源相关原语及其使用

发布者:小悟空111最新更新时间:2010-10-08 来源: 维库关键字:FPGA  全局时钟  BUFG 手机看文章 扫描二维码
随时随地手机看文章

  FPGA全局时钟资源一般使用全铜层工艺实现,并设计了专用时钟缓冲与驱动结构,从而使全局时钟到达芯片内部的所有可配置单元(CLB)、I/O单元(IOB)和选择性块RAM(Block Select RAM)的时延和抖动都为最小。为了适应复杂设计的需要,Xilinx的FPGA中集成的专用时钟资源与数字延迟锁相环(DLL)的数目不断增加,最新的Virtex II器件最多可以提供16个全局时钟输入端口和8个数字时钟管理模块(DCM)。

  与全局时钟资源相关的原语常用的与全局时钟资源相关的Xilinx器件原语包括:IBUFG、IBUFGDS、BUFG、BUFGP、BUFGCE、BUFGMUX、BUFGDLL和DCM等。

  1. IBUFG即输入全局缓冲,是与专用全局时钟输入管脚相连接的首级全局缓冲。所有从全局时钟管脚输入的信号必须经过IBUF元,否则在布局布线时会报错。IBUFG支持AGP、CTT、GTL、GTLP、HSTL、LVCMOS、LVDCI、LVDS、LVPECL、LVTTL、PCI、PCIX和SSTL等多种格式的IO标准。

  2. IBUFGDS是IBUFG的差分形式,当信号从一对差分全局时钟管脚输入时,必须使用IBUFGDS作为全局时钟输入缓冲。IBUFG支持BLVDS、LDT、LVDSEXT、LVDS、LVPECL和ULVDS等多种格式的IO标准。

  3. BUFG是全局缓冲,它的输入是IBUFG的输出,BUFG的输出到达FPGA内部的IOB、CLB、选择性块RAM的时钟延迟和抖动最小。

  4. BUFGCE是带有时钟使能端的全局缓冲。它有一个输入I、一个使能端CE和一个输出端O。只有当BUFGCE的使能端CE有效(高电平)时,BUFGCE才有输出。

  5. BUFGMUX是全局时钟选择缓冲,它有I0和I1两个输入,一个控制端S,一个输出端O。当S为低电平时输出时钟为I0,反之为I1。需要指出的是BUFGMUX的应用十分灵活,I0和I1两个输入时钟甚至可以为异步关系。

  6. BUFGP相当于IBUG加上BUFG。

  7. BUFGDLL是全局缓冲延迟锁相环,相当于BUFG与DLL的结合。BUFGDLL在早期设计中经常使用,用以完成全局时钟的同步和驱动等功能。随着数字时钟管理单元(DCM)的日益完善,目前BUFGDLL的应用已经逐渐被DCM所取代。

  8. DCM即数字时钟管理单元,主要完成时钟的同步、移相、分频、倍频和去抖动等。DCM与全局时钟有着密不可分的联系,为了达到最小的延迟和抖动,几乎所有的DCM应用都要使用全局缓冲资源。DCM可以用Xilinx ISE软件中的Architecture Wizard直接生成。[page]

  全局时钟资源的使用方法(五种)

  1. IBUFG + BUFG的使用方法:

  IBUFG后面连接BUFG的方法是最基本的全局时钟资源使用方法,由于IBUFG组合BUFG相当于BUFGP,所以在这种使用方法也称为BUFGP方法。

  2. IBUFGDS + BUFG的使用方法:

  当输入时钟信号为差分信号时,需要使用IBUFGDS代替IBUFG。

  3. IBUFG + DCM + BUFG的使用方法:

  这种使用方法最灵活,对全局时钟的控制更加有效。通过DCM模块不仅仅能对时钟进行同步、移相、分频和倍频等变换,而且可以使全局时钟的输出达到无抖动延迟。

  4. Logic + BUFG的使用方法:

  BUFG不但可以驱动IBUFG的输出,还可以驱动其它普通信号的输出。当某个信号(时钟、使能、快速路径)的扇出非常大,并且要求抖动延迟最小时,可以使用BUFG驱动该信号,使该信号利用全局时钟资源。但需要注意的是,普通IO的输入或普通片内信号进入全局时钟布线层需要一个固有的延时,一般在10ns左右,即普通IO和普通片内信号从输入到BUFG输出有一个约10ns左右的固有延时,但是BUFG的输出到片内所有单元(IOB、CLB、选择性块RAM)的延时可以忽略不计为“0”ns。

  5. LOGIC + DCM + BUFG的使用方法:

  DCM同样也可以控制并变换普通时钟信号,即DCM的输入也可以是普通片内信号。使用全局时钟资源的注意事项全局时钟资源必须满足的重要原则是:使用IBUFG或IBUFGDS的充分必要条件是信号从专用全局时钟管脚输入。换言之,当某个信号从全局时钟管脚输入,不论它是否为时钟信号,都必须使用IBUFG或IBUFGDS;如果对某个信号使用了IBUFG或IBUFGDS硬件原语,则这个信号必定是从全局时钟管脚输入的。如果违反了这条原则,那么在布局布线时会报错。这条规则的使用是由FPGA的内部结构决定的:IBUFG和IBUFGDS的输入端仅仅与芯片的专用全局时钟输入管脚有物理连接,与普通IO和其它内部CLB等没有物理连接。另外,由于BUFGP相当于IBUFG和BUFG的组合,所以BUFGP的使用也必须遵循上述的原则。

  全局时钟资源的例化方法

  全局时钟资源的例化方法大致可分为两种:

  一是在程序中直接例化全局时钟资源;

  二是通过综合阶段约束或者实现阶段约束实现对全局时钟资源的使用;

  第一种方法比较简单,用户只需按照前面讲述的5种全局时钟资源的基本使用方法编写代码或者绘制原理图即可。

  第二方法是通过综合阶段约束或实现阶段的约束完成对全局时钟资源的调用,这种方法根据综合工具和布局布线工具的不同而异。

关键字:FPGA  全局时钟  BUFG 引用地址:FPGA全局时钟资源相关原语及其使用

上一篇:赛灵思联手四川虹视成立 FPGA 联合实验室
下一篇:基于FPGA和IP Core的定制缓冲管理的实现

推荐阅读最新更新时间:2024-05-02 21:09

基于AIS的船舶避碰系统研究
  船舶自动识别系统(Automatic Identification System,AIS)诞生于20世纪90年代。它是集通信、网络和信息技术于一体的多学科高科技的新型航海助航设备和安全信息系统。   1 AIS的关键技术研究   AIS 配合全球定位系统(GPS)将船舶对地速度、位置、目的地、对地航向及航向改变率等船舶动态参数,和船舶名称、船舶类型、呼号、吃水及危险货物等船舶静态数据由甚高频(VHF)频道向附近水域的船舶及岸台广播,使邻近船舶及岸台能及时掌握附近海面所有船舶的动静态信息,以迅速互相通话协调,采取必要避让行动。   AIS系统的硬件主要由四部分组成:   通信模块 利用VHF数字通信通道转发和接收广播的G
[嵌入式]
Altera发布集成收发器的40nm FPGA系列
Altera公司发布集成了收发器的两款FPGA系列新产品。新增的Stratix IV GT和Arria II GX 40-nm FPGA系列与Stratix IV GX FPGA和HardCopy IV GX ASIC一起进一步拓展了业界全系列收发器FPGA和ASIC解决方案产品组合。Altera系列产品提供的收发器速率覆盖了155 Mbps至11.3 Gbps,满足了从对成本敏感的视频摄像机到超高性能骨干系统等多种应用需求。 Arria II GX、Stratix IV GT、Stratix IV GX FPGAs和HardCopy IV GX ASIC采用了通用收发器技术,由一套通用开发工具为
[嵌入式]
基于FPGA的多路光栅信号采集方案
光栅传感器作为精密机械量测量的有效工具在线位移、角位移、速度、加速度等工程的测量上得到了广泛应用。在长度测量中,光栅微位移传感器可以达到μm级的测量精度,同时可以动态采集长度的变化,从而可以精确地算出运动速度甚至加速度。在曲面测量中,相比于传统的三坐标机、轮廓仪,光栅传感器也具有可以动态检测面形变化,精度高,可以实时输出面形数据等优势。 多路选择技术的数据采集中得到了广泛应用,在一些分布式系统当中,使用多路选择技术可以减少I/O口使用数量,提高系统集成度。具体来说,使用多路选择开关对多路信号进行选通处理,将多路选择开关的输出端连接采集芯片的I/O口,使采集芯片对各路信号进行轮番采样,但轮番采样使得原始波形的采集离散化,即在芯片对采
[电源管理]
基于<font color='red'>FPGA</font>的多路光栅信号采集方案
基于FPGA和Verilog的液晶显示控制器设计
   液晶显示器由于具有低压、微功耗、显示信息量大、体积小等特点,在移动通信终端、便携计算机、GPS卫星定位系统等领域有广泛用途,成为使用量最大的显示器件。液晶显示控制器作为液晶驱动电路的核心部件通常由集成电路组成,通过为液晶显示系统提供时序信号和显示数据来实现液晶显示。本设计是一种基于FPGA(现场可编程门阵列)的液晶显示控制器。与集成电路控制器相比,FPGA更加灵活,可以针对小同的液晶显示模块更改时序信号和显示数据。FPGA的集成度、复杂度和面积优势使得其日益成为一种颇具吸引力的高性价比ASIC替代方案。本文选用Xilinx公司的SpananIII系列XC3S200器件,利用硬件描述语言Verilog设计了液晶显示拧制器,实现
[电源管理]
基于<font color='red'>FPGA</font>和Verilog的液晶显示控制器设计
满足RF处理需求的嵌入式仪器设计
概论 无线市场就像是我们的一个新生的领域。新的射频(RF)技术的爆炸性增长为解决老问题创造了新机会。灵活的高分辨率波形生成,数字化以及分析子系统能够利用射频信号配合下变频, 并且调整多个关心点也是必需的。在并发,实时和多通道解调这些领域必须使用各种各样的策略。通常,这种设备必须便于携带和在操作恶劣环境条件下使用,因此给包装,能耗和管理提出了巨大的挑战。 现有解决方案采用阵列的专用数字信号处理器(DSP)与一个RF数字化转换器协同工作提供需要实施下变频和解调功能的计算带宽。虽然有效,但是这种方法是复杂和昂贵的,因为多处理器编程需要复杂的流程管理和负载平衡,同时还要避免竞争条件和数据瓶颈。 兼顾行业标准,现有的
[嵌入式]
满足RF处理需求的嵌入式仪器设计
基于DSP/FPGA高精度测量系统中多电源可靠性设计
由于高精度测量系统工作频率高,数据处理量大,功耗也相对较高,而供电系统的好坏直接影响到系统的稳定性和系统的精度,所以设计高效率、高可靠性的供电系统具有极其重要的现实意义。本文主要叙述了一个实际高精度测量系统的电源设计。   1 DSP和FPGA的电源要求   系统采用Altera公司的Cyclone系列EPIC12型号FPGA和TI公司的TMS320C6713B型号DSP均需要两种电源 :外围I/O电压为3.3V及内核电压分别为1.5V和1.2V。因此必须考虑它们的配合问题:(1)在加电过程中,要保证内核先得到供电,外围I/O后得到供电,内核最晚也应该与周边I/O接口电源同时加电。否则可能会导致DSP和FPGA的输出端出现大电流
[电源管理]
基于DSP/<font color='red'>FPGA</font>高精度测量系统中多电源可靠性设计
英飞凌推出面向航天级FPGA的符合QML-V标准的抗辐射NOR闪存
英飞凌推出业界首款面向航天级FPGA的符合QML-V标准的抗辐射NOR闪存 航天级可编程逻辑器件(FPGA)需要包含其引导配置的可靠的高容量非易失性存储器。为满足对高可靠性存储器日益增长的需求,英飞凌科技股份公司旗下的Infineon Technologies LLC近日宣布推出业界首款高容量抗辐射(RadTol)NOR闪存产品,该产品通过了MIL-PRF-38535 QML-V流程认证。QML-V流程是航天级IC的最高质量和可靠性标准认证。 英飞凌的256 Mb和512 Mb RadTol NOR Flash非易失性存储器可带来出色的低引脚数单芯片解决方案,适用于FPGA配置、图像存储、微控制器数据和引导代码存储等应用场
[嵌入式]
基于FPGA的前向纠错算法
1 引言   目前,无线产品的广泛应用使无线音频和视频的高质量传输成为可能。蓝牙、无限局域网等无线传输设备比较复杂,成本较高,急需开发一种简便的、仅用于流媒体的无线传输平台,将音频数据实时地发送到移动终端。由于音频数据的实时性,不宜采用反馈重传等造成很大时延的差错控制方式。前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后不仅可以发现错误,而且能够判断错误码元所在的位置并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好,故可选择前向纠错来实现差错控制。   笔者设计的系统指标如下:   ●当信道误码率为3x10-3时,经过前向纠错,误码率降到10-7以下;   ●数据源使用的是S/PDIF民用数字音频格式
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved