浮点LMS算法的FPGA实现

发布者:丝语轻风最新更新时间:2011-09-27 关键字:FPGA  浮点LMS算法 手机看文章 扫描二维码
随时随地手机看文章
   

引言
  LMS(最小均方)算法因其收敛速度快及算法实现简单等特点在自适应滤波器、自适应天线阵技术等领域得到了十分广泛的应用。为了发挥算法的最佳性能,必须采用具有大动态范围及运算精度的浮点运算,而浮点运算的运算步骤远比定点运算繁琐,运算速度慢且所需硬件资源大大增加,因此基于浮点运算的LMS算法的硬件实现一直以来是学者们研究的难点和热点。

  文献[1]提出了一种适合于FPGA(现场可编程门阵列)实现的自定义24位浮点格式和一种高效结构的多输入FPA(浮点加法器),这种结构的多输入FPA与传统的级联结构相比不仅可增加运算速度,还能大量减少所需的硬件资源。

  本文正是基于这种高效结构的多输入FPA,在FPGA上成功实现了基于浮点运算的LMS算法。测试结果表明,实现后的LMS算法硬件资源消耗少、运算速度快且收敛性能与理论值相近。

1 浮点运算单元的设计

1.1 浮点加法器的设计

一般说来,双输入浮点加法器需要以下操作步骤:

  a) 对阶操作:比较指数大小,对指数小的操作数的尾数进行移位,使操作数的阶码相同。

  b) 尾数相加:对对阶后的尾数进行加(减)操作。

  c) 规格化:规格化有效位并且根据移位的方向和位数修改最终的阶码。

  在用FPGA进行数字信号处理的系统中,一般处理的数据都是经A/D采样送出的信号,其分辨率一般取12~16位,取18位有效位数即可满足绝大多数的情况。同时,目前FPGA 芯片内集成的乘法器均是18×18位的硬核。据此,文献[1]自定义了一种24位的浮点数据格式。

  该格式的浮点数所表示的具体值可用下面的通式表示:

 

式中:m为18位补码数。

  小数点定在最高位与次高位之间,这样m即表示-1~1之间的小数;e为6位补码数,范围为-32~31。且规定当m=0,e=-32时值为0。

  传统的多输入浮点加法器结构如图2所示。以8输人为例,需要7个双输入FPA通过3级级联而成。这种结构的算法的顺序时延含有大量的重复步骤。如3级双输入FPA运算就有3次相同的规格化操作,如果将3级规格化操作用1级操作来代替,不仅可大大缩短运算时延,还可减少所需硬件资源。

  基本运算单元不再是传统的双输入FPA,而是根据FPA的一般运算步骤构造的算法结构,通过大量采用并行运算从而大大减小运算时延。以8输入的对阶操作为例,改进算法的8输入对阶操作只需顺序进行3级比较操作、1级减法操作及1级移位操作即可完成;而采用图2所示的并行算法,则需顺序进行3级比较操作、3级减法操作及3级移位操作,相对于改进算法来说增加了2级顺序减法操作及2级移位操作时延。

1.2 浮点乘法器的设计

  浮点乘法器与浮点加法器相比,不需要对阶等系列操作,实现起来相对简单示。

  首先将输人数据的18位补码直接相乘得36位乘法结果,由于尾数的小数点定在最高位与次高位之间,相乘结果的绝对值小于1,故截取第35~18位为尾数乘法结果。尾数乘法结果与相加后的指数一起进行规格化输出即完成浮点乘法功能。

2 浮点LMS算法的FPGA实现

2.1 LMS算法的一般步骤

  Widrow和Hoff在1960年提出了LMS算法,它是取单个误差样本平方的梯度作为均方误差梯度的估计,算法的步骤如下:

 

  式(2)~式(5)中:y(n)为输出信号;X(n)为输入矢量;W(n)为抽头系数矢量;r(n)为参考信号;e(n)为误差信号;▽(n)为梯度矢量;μ为步长因子。

  由式(2)~式(5)可知,LMS算法的所有运算均由加法及乘法操作组成,易于硬件实现。算法步骤其实为递推公式,且步骤中多处需进行多输入加法操作,这样,采用高效结构的多输入浮点加法器即可大量节约硬件资源并提高运行速度。

2.2 算法的FPGA实现

  采用浮点LMS算法对自适应横向滤波器进行了实现。输入信号为500 kbit/s的伪随机序列加高斯白噪声,采样频率为4 MHz,采样数据为18位补码,共7级抽头系数。这样,由式(2)~式(5)可知,将第1步(式(2))、第2步(式(3))组合起来则需并行进行7个乘法操作,再进行一次8输入的加法操作;第3步(式(4))为并行进行7个乘法操作;第4步(式(5))需并行进行7个加法操作,其中肛取2-5,则其乘法操作在FPGA实现时可用移位操作代替。

  采用的开发环境为ISE7.li,编程语言为VHDL,综合工具为Synplicity7.0,仿真工具为Modelsim6.0,FPGA处理时钟频率为64 MHz。

  基于浮点运算的LMS算法所需硬件资源较少,运算速度高(最高时钟频率大于64 MHz),可以满足系统设计要求。

  不同信噪比条件下FGPA实现后的仿真结果与理论仿真结果的对比图。由图中可清楚地看出,在FPGA上实现的浮点LMS算法的收敛性能与理论值非常接近。

3 结束语

  LMS算法的理论虽然十分成熟,但浮点LMS算法的硬件实现因浮点运算单元的硬件资源消耗大、运算速度慢等缺点,从而一定程度上限制了LMS算法在需要快速数字信号处理场合中的应用。本文根据文献[1]提出的高效结果的多输入浮点加法器,成功地在FPGA上实现了浮点LMS算法。仿真测试结果表明,实现后的LMS算法硬件资源消耗少、运算速度

关键字:FPGA  浮点LMS算法 引用地址:浮点LMS算法的FPGA实现

上一篇:基于FPGA原型设计 能为您做些什么?
下一篇:Micro/sys 采用赛灵思 Spartan-6 FPGA推出集成了FPGA与ARM Cortex-A8处理器的单板计算机

推荐阅读最新更新时间:2024-05-02 21:36

基于PXA255设计的图像采集传输系统
0 引言 图像处理技术的快速发展,使得图像采集处理系统在提高农业生产自动化程度中的应用越来越广泛。目前的图像采集系统有的基于CCD摄像机、图像采集卡和计算机,有的基于CCD摄像机、解码器、FPGA和DSP,而有的基于CMOS图像传感器芯片、FPGA和DSP,它们在实时性,灵活性,可维护性方面各有优缺点。而在农业生产中,以基于CCD摄像机、图像采集卡和计算机的系统居多。本文结合实际系统中的前端图像处理和图像数据传输需要.充分利用ARM的灵活性和FPGA的并行性特点,设计了一种基于ARM+FPGA的图像快速采集传输系统。所选的ARM (Ad-vanced RISC Machines)体系结构是32位嵌入式RISC微处理器结构,该微
[单片机]
基于PXA255设计的图像采集传输系统
基于ARM的CRC算法和基于FPGA算法性能比较
CRC是一种实际通信中应用很广泛的线性分组码,具有很强的检错能力,但没有纠错能力。在应用的时候可以根据不同的场合选择硬件电路或者软件算法来实现,硬件实现的原理是根据特定的CRC多项式对输入信号和上一次校验结果进行移位异或操作,得到本次CRC校验结果;软件则可以采用多种不同算法进行计算,相应的时间复杂度会有所差别 题目分析:本题目的设计意图在于使用FPGA中硬件资源对某些流程固定的软件算法进行加速,即algorithm-hardware codesign,是软硬协同设计中更为具体的一种形式,本题目中的CRC算法只是其中一种实例。这种由硬件电路实现的软件算法通常能够很大程度上的降低计算时间,代价仅是FPGA内部所消耗的一些逻辑、存储资
[单片机]
基于ARM的CRC<font color='red'>算法</font>和基于<font color='red'>FPGA</font>的<font color='red'>算法</font>性能比较
FPGA PCIe 视频采集解决方案分析
IP视频监控系统市场的增长一直超过预期,并且这种趋势有望延续到2011年。视频监控的应用领域非常广泛,包括: - 私有财产监控 - 商场/商店、仓库和楼宇监控 - 警方使用的城市监控 -大型活动的监控 (如北京奥运会) 网络视频监控的出现也大大扩展了视频监控的应用范围。高速网络基础设备容易部署,便于实现集中监控和视频信息的归档。 整体而言全球视频监控设备市场的总额接近70亿美元。中国监控设备市场预计将从目前的7.83亿美元增长到2011年的14亿。(消息来源: iSuppli Corp.) 在未来的几年内,2008年北京奥运会、2010年上海世博会和“和平中国”计划有望成为推动这一市场继续增长的重大事件。因此
[嵌入式]
赛灵思Spartan FPGA平台应用于香港应用科技研究院
全球可编程逻辑解决方案领导厂商赛灵思公司(Xilinx, Inc. (NASDAQ: XLNX))日前宣布,香港应用科技研究院 (Hong Kong Applied Science and Technology Research Institute (应科院) 在其面向平板 LCD 电视的最先进的动态 LED 背光控制技术设计核心,采用了赛灵思旗舰产品 Spartan® -3A FPGA。通过将 Spartan 用作其系统的核心部件,应科院可为下一代 LCD 电视机制造商提供比竞争解决方案更清晰的视频图像质量和更低的功耗。借助 Spartan-3A FPGA 特有的高度灵活性,应科院可根据其客户的具体功耗和性能需求进行技术定
[嵌入式]
增量型光电编码器抗抖动二倍频电路的设计
  在某些工业自动控制领域、某些装备应用上,经常会遇到各种需要测量长度的场合,目前通常采用的是光电编码器。光电编码器根据其刻度方法及信号输出形式,可分为增量式、绝对式、混合式三种。它是一种集光、机、电为一体的传感器,具有精度高、响应快、性能稳定可靠等显著的优点,能够精确地检测角度、转速、位移等参数。它可以将位移等物理量转变为数字脉冲信号,通过计算脉冲的个数,实现精确的位移测量。然而由于工作环境等因素影响,增量型光电编码器输出信号中含有较多的抖动误码脉冲,将会引起误计数。本文分析误码脉冲产生的原因,设计一种有效的滤波电路。    1 增量型编码器的工作原理   增量型编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或
[嵌入式]
增量型光电编码器抗抖动二倍频电路的设计
FPGA基础入门(二)
很多兄弟对于CPLD下JTAG的下载很熟悉了,可转到FPGA来的时候,多多少少有些迷惑,怎么 出现配置芯片了,为什么要用不同的下载电缆,不同的下载模式?我就自己知道的一点东西 谈一些个人的见解,并发一些资料.希望路过的朋友喝个采,版主给点威望.有问题大家也 一起讨论,欢迎拍砖. 1.FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用 的(JTAG)配置方式。 AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPC S1,EPCS4配置器件专供AS模式,目前只支持 Cyclone系列。使用Altera串行配置器件来 完成。Cyclone期间处于主动地位,配置期间
[嵌入式]
英飞凌推出全新高性能FPGA电源开发平台
2016年3月23日,德国慕尼黑讯 英飞凌科技股份公司(FSE: IFX / OTCQX: IFN-NY)近日发布适配Kintex UltraScale 的电源开发板,该开发板配备英飞凌带PMBus全功能的数字负载点(PoL)DC-DC稳压器IR3806x产品。实现该开发板设计灵活性的一个关键推动因素是IR3806x系列出色的PMBus功能而且电路设计的相关配置可存储在该产品系列的内部存储器中。此外,PMBus指令支持实时控制、故障状态监测和参数遥测。 极大的灵活性 片上可编程SupIRBuck 稳压器能为基于FPGA的设计带来极大灵活性。因而,它很容易适应快速变化的设计要求。IR3806x SupIRBuck稳压器在单一封装
[电源管理]
FPGA之DDS信号发生器
本文主要涉及以下几个问题 1:频率控制字如何得到 2:DDS的框图 3:用MATLAB得到正弦波的数字量化 4:设计代码 5:仿真代码 6:仿真图 首先将正弦波信号离散化,离散成多少位的根据自己的设计精度要求来定,但最高位一定是符号位,负数用补码来表示;然后用rom或者ram来存储离散后的数据;再由频率控制字的累加来给出地址用于读出ROM或者ram中的数据。 1:相位累加器的位宽设为n,fc/(2^n)称作频率分辨率,这是能分辨出的最小频率,提高相位累加器位宽可以调高频率分辨率。目标频率f=M*fc/2^n ,fc是采样频率,M是频率控制字,由此可以得到频率控制字。 2:DDS框图其中输入到ra
[测试测量]
<font color='red'>FPGA</font>之DDS信号发生器
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved