在便携式应用中,利用零功耗CPLD来降低系统总成本

发布者:HarmoniousCharm最新更新时间:2012-08-21 来源: 21ic关键字:零功耗  CPLD  便携式 手机看文章 扫描二维码
随时随地手机看文章
   

可编程逻辑器件(PLD,Programmable Logic Device)的灵活性一直受到电子工程师的喜爱,但在各种移动式消费类电子产品市场仍然是ASIC芯片的天地。有几个原因阻碍着CPLD器件进入移动设备市场,尤其是各种基于电池供电的手持设备。一是其高昂的价格,二是其巨大的功耗,还有一个因素是CPLD器件的工作频率。同样规模的CPLD和ASIC,CPLD的最大工作频率往往低于专门设计的ASIC芯片。

基于这种情况美国莱迪思半导体有限公司推出了ispMACH4000Z系列器件。该器件突破了CPLD器件进军移动式消费类电子产品市场所遇到的价格和速度门槛。IspMACH4000Z(In-System Programmable Macro Array CMOS Hight-densigy)系列器件的推出标志着莱迪思公司的第三代BFW(SuperBig,SuperFast,SuperWide)器件的面世。该系列器件的最高工作频率可达400MHz,完全能满足大部分当代消费类电子产品的高速应用场合。

通用CPLD应用

CPLD主要是由可编程逻辑宏单元(MC,Macro Cell)围绕中心的可编程互连矩阵单元组成。其中MC结构较复杂,并具有复杂的I/O单元互连结构,可由用户根据需要生成特定的电路结构,完成一定的功能。由于CPLD内部采用固定长度的金属线进行各逻辑块的互连,所以设计的逻辑电路具有时间可预测性,避免了分段式互连结构时序不完全预测的缺点。

第一组应用介绍了CPLD所胜任的功能。虽然这些功能不是专门针对降低功耗的,但是,利用低功耗CPLD来实现这些功能对功耗有积极的影响。例如,一个常见的CPLD功能是合并分立逻辑。这可以节省PCB空间,降低材料(BOM)成本,并减小总体功耗。下面讨论一些常见的通用CPLD应用。

1. 上电排序

在许多产品中,各种器件的上电顺序非常重要,这使得上电排序成为一个关键的功能。CPLD在系统上电的几个毫秒内就开始工作,因此成为控制系统中各种器件(包括微处理器或微控制器)上电排序的最佳选择(图1)。上电排序仅仅是低功耗CPLD能够实现的多种系统功能的其中之一。可编程逻辑的最大价值在于可将多种功能在一个器件中实现。


图1:利用CPLD进行上电排序。

2. 电压转换

很多产品都需要使用电压不同的各种逻辑器件。为支持多电压应用,设计人员需要频繁连接不同电压的器件。CPLD拥有大量的I/O,它们被分组成多个块。每个I/O块被依次分配一个特有的电压电源。因此,开发电压转换器只需要将某一电压的所有I/O分组在一个块中,并将相关的电压基准连接到这些I/O所需的电源上(图2)。使用CPLD不但能够很好地完成电压转换,它更大的优势在于和电压转换相结合的可编程能力。例如,如果某一应用要求的LCD显示器不被主处理器所支持,且两者电压不同,那么可以利用CPLD来实现主处理器和LCD显示器之间的电压转换时序控制。


图2:利用Altera MAX IIZ CPLD进行电压转换。[page]

 

    

3. 通用I/O引脚扩展

I/O是 input/output的缩写,即输入输出端口。每个设备都会有一个专用的I/O地址,用来处理自己的输入输出信息。CPU与外部设备、存储器的连接和数据交换都需要通过接口设备来实现,前者被称为I/O接口,而后者则被称为存储器接口。存储器通常在CPU的同步控制下工作,接口电路比较简单;而I/O设备品种繁多,其相应的接口电路也各不相同,因此,习惯上说到接口只是指I/O接口。

在很多情况下,CPLD是微控制器、ASSP和ASIC优异的辅助器件。例如,在一个常见的通用I/O(GPIO)引脚扩展应用中,设计人员可以把小型低成本微控制器的可编程能力和CPLD的GPIO资源结合起来。CPLD构建一组内部寄存器,微控制器通过I2C或SPI等串口来访问这些寄存器(图3),这使得微控制器能够利用现有的串口来扩展其I/O总数。CPLD扩展I/O也可以用于实现电压转换,从而提高了CPLD的实用性。


图3:GPIO引脚扩展。

虽然上述例子采用的是微控制器,但同样也适用于采用ASSP和ASIC的情况。例如,很多设计人员发现用小规模ASIC通过串口来驱动CPLD这种方案的成本要比具有相同I/O能力的大规模ASIC方案低得多。

过去,人们认为“可编程逻辑”并不意味着“低功耗”。不过,零功耗CPLD的出现改变了这一观点,这一技术使得低功耗电子产品设计人员能够充分利用可编程逻辑的诸多优势。现在,除了具备CPLD在一般应用中已得到认可的杰出性能外,零功耗CPLD还能够降低便携式产品的总功耗。

4. 接口桥接

桥接(Bridging),是指依据OSI网络模型的链路层的地址,对网络数据包进行转发的过程。 是工作在osi的第二层的。一般的交换机,网桥就有桥接作用。就交换机来说,本身有一个端口与mac的映射表,通过这些,隔离了冲突域(collision)。 简单的说就是通过网桥可以把两个不同的物理局域网连接起来,是一种在链路层实现局域网互连的存储转发设备。网桥从一个局域网接收MAC帧,拆封、校对、校验之后 ,按另一个局域网的格式重新组装,发往它的物理层。

便携式应用设计人员经常需要连接具有不同I/O接口的器件。这一功能被称为桥接,因为CPLD被用来构成不同接口之间的“桥”。图4所示为采用CPLD来桥接两种不同的串口:I2C和SPI。该设计可以在Altera MAX IIZ EPM240Z CPLD中实现,使用约43%的可用逻辑和6个I/O引脚。

图4:利用MAX IIZ CPLD桥接I2C与SPI。

图5所示为一个主处理器与SPI主机的接口,这是一个利用CPLD来实现串并转换接口的实例。这个例子创建了一个主处理器总线接口和一个完整的SPI主机,可以在MAX IIZ EPM240Z CPLD中实现,占用约30%的可用逻辑和25个I/O引脚。

在图6中,CPLD被用于桥接两种不同的并口。这一设计实例实现了PXA310主处理器总线与Compact FLASH+器件的接口,可采用MAX IIZ EPM240Z CPLD实现,使用约17%的可用逻辑及59个I/O引脚。

6.降低功耗的应用

上述应用展示了利用低功耗CPLD来实现便携式应用中的多种常见功能。下一组应用将介绍利用零功耗CPLD的独特功能来降低便携式应用功耗的途径。


图5:利用MAX IIZ CPLD实现主处理器至SPI接口。[page]

 

   

7. 自关断和自上电

MAX IIZ CPLD是一种可实现超低待机功耗的零功耗CPLD。例如,EPM240Z器件在待机时仅消耗29μA电流。不过,为达到绝对最低功耗,理想的状态是器件在不工作时不消耗能量。令人吃惊的是,这确实可以做到,因为与传统的宏单元CPLD不同,MAX IIZ器件具有内部振荡器,可实现自动关断功能。


图6:利用MAX IIZ CPLD实现主处理器至CF+接口。

该操作十分简单。MAX IIZ CPLD的所有输入被用于控制计数器。任意输入被激活后,计数器保持复位。当所有输入进入非激活状态后,计数器开始计数,直到达到用户指定的时间长度。如果在这一时间段所有输入仍处于未激活状态,则发送一个信号以禁用MOSFET,这样可以关断MAX IIZ器件的电源。当任意输入再次被激活时,内部计数器复位、通电,MAX IIZ CPLD上电(图7)。


图7:输入处于非激活状态时可实现自动关断和自动上电。

8. 多输入时的上电

MAX IIZ CPLD能够轻松地监视其输入,可以自停止或者自启动,这些功能都可以直接应用在降低便携式应用的功耗上。在许多便携式产品中,通过按下电源开关实现上电。如果产品在一段时间内空闲,可启用关断或者待机模式来延长电池使用寿命。对于这一点,许多便携产品设计人员希望用户来重新激活产品,例如,开盖、按下任意键、插入存储器卡等(图8)。但是,大多电源管理设计都只支持一个控制输入。在这种情况下,可以采用CPLD来监控输入。当产品在设计人员指定的一段时间都处于空闲,CPLD向电源管理逻辑发出关断信号。当任意输入使其激活后,CPLD上电并向电源管理逻辑发出系统上电信号。


图8:利用MAX IIZ CPLD可根据输入工作状态来启动或者停止系统供电。[page]

 

   

9. 将CPLD用作低功耗协处理器

可以把很多系统功能从耗电的大型主系统处理器中卸载到节电的小型CPLD中。大量的系统“管理”功能必须周期性地完成。在下面的例子中,系统处理器可保持在节能模式,而低功耗MAX IIZ CPLD利用其内部振荡器来周期性地执行任务。如果需要的话,MAX IIZ CPLD的内部振荡器可与外部振荡器进行校准。校准后,外部振荡器关断,以进一步降低功耗(图9)。


图9:CPLD内部振荡器可与外部振荡器进行校准。

监控系统状态:CPLD周期性地检查系统状态。如果一切正常,则继续保持关断,但如果出现问题,则CPLD记录下问题并唤醒主处理器。驱动蓝牙LED:在很多便携式应用中,驱动蓝牙LED对于CPLD而言是非常普遍的应用。替代方案需要唤醒主处理器以及足够的其它系统部件才能实现这一功能,相比采用CPLD要消耗更多的能量。监控电池电量:当主处理器保持待机时,CPLD周期性地读取电池电量。如果电源降到规定的电压以下,则CPLD唤醒主处理器,随即系统正常关断。

本文小结

过去,低功耗便携产品设计人员并不能充分利用可编程逻辑的诸多优势。不过,待机电流只有几微安的零功耗CPLD的出现使得可编程器件成为低功耗设计人员可以选用的器件。

本文介绍了利用CPLD来实现通用系统功能的实例,展示了MAX IIZ CPLD中自停止和自启动电路的独特功能。这一功能可以降低便携式应用的功耗。此外,本文还介绍了怎样将周期性的系统监控和媒体传送等任务从主处理器卸载到低功耗CPLD协处理器中。由于采用了零功耗CPLD,便携式电子产品设计人员现在进一步提高了开发低功耗、多功能创新产品的能力。

关键字:零功耗  CPLD  便携式 引用地址:在便携式应用中,利用零功耗CPLD来降低系统总成本

上一篇:简述DDS原理及其基于FPGA的实现
下一篇:可控与灵活性软件解FPGA测试之忧

推荐阅读最新更新时间:2024-05-02 22:16

基于ATmega16的便携式机车信号发生器的设计研究
内容摘要:便携式机车速度信号发生器能够模拟机车运行参数,准确输出速度变化信号,便于检修工作人员及时排查故障点,提高检修效率。该设备采用手持式结构,主集成了脉冲形成模块、功率放大模块、故障诊断、信息显示及输入输出等功能模块,形成一套完善的系统,能够独立,精确模拟机车速度信号,并能方便,有效,可靠的检测出机车速度信号相关的线路状况,本文详细叙述了该信号发生器的研发方案、系统构成和主要功能特点,并介绍了其现场使用情况。 机车速度检测系统是关系机车可靠控制和机车安全运行的重要环节,直接影响机车运行的安全正点。目前周内铁路主要干线机车机车的过渡装置、监控装置、防空转系统、车载轴承检测装置所需的机车速度信号,是由安装在机车轮对车轴上的
[单片机]
基于ATmega16的<font color='red'>便携式</font>机车信号发生器的设计研究
单片机控制的便携式篮球计时器设计
  引言   本设计利用单片机AT89C51完成了计时的功能,详细地介绍了系统硬件与软件的设计过程,设计由AT89C51编程控制Led七段数码管作显示的篮球计时系统。该系统具有赛程时间设定,计时启功,暂停,报警,24 s及复位等功能。   1 系统原理   篮球比赛计时的准确性和计时的精确度是要求很高的,而单片机在这方面有着出色的表现。该系统采用频率为12 MHz的芯片,整个系统由按键、计时显示、报警,箭头方向等部分组成。该系统组成方框图如图1所示。      单片机是该系统电路的核心组成部分,系统的各种功能都是在单片机内通过编程来实现。单片机选用AT89C51。它的X1(19脚)和X2(18脚)外接12MHz
[单片机]
单片机控制的<font color='red'>便携式</font>篮球计时器设计
锂离子电池为便携式医疗设备供能的优势
了现场救助设备、监控设备和固定医疗设备的性能,进而推动了医疗保健行业的发展。不过除了便携性以外,医疗器械制造商当然还希望能够制造出可靠性高的器械,因为人们的生命往往命悬一线。手机坏了固然是恼人的事,但如果便携式心脏监控仪或者输液泵由于电池耗尽而停止运作,终端用户——及病人——面临的问题则严重得多。 几年前,医疗专业人员还无法将救助生命的设备带到现场;因为那时便携式仪器的技术尚未成熟。但如今,大量的监控仪器、超声设备和输液泵可在远离医院的场所使用——甚至战场。便携式设备的移动越来越方便。正是由于诸如锂离子电池等技术的应用,重达50磅的笨重除颤器才可以被更轻便、更紧凑的用户友好型装置取代,也不会造成医护人员肌肉的拉伤。 病人的移动性也
[电源管理]
R8100便携式无线电综测仪的产品特点及适用范围
R8100无线电综合测试仪是一款智能化、便携式的综合测试仪器,具有通信系统分析的所有功能和测试能力。它的显著特点在于内置镍氢电池、符合人体工程学性能和R8000系列配套的所有的高级功能套件。R8100便携式综测仪不仅仅具有台式综测仪的功能,而且满足军标3级震动和冲击要求的综合性能,这样R8100可实现所有陆地无线电设备(LMR)的测试需求。 产品特点: 1、携带方便 每一台R8100都配备一块镍氢电池,重量只有一斤(490g)。电池续航时间超过90分钟,方便插拔。R8100显示器在任何时候都显示可用的电池容量,备用电池及充电器可选配。 2、超强性能 独有的双屏显示可以同时显示载波信号和调制音频,从而可以通过一个屏幕分析载波信号
[测试测量]
R8100<font color='red'>便携式</font>无线电综测仪的产品特点及适用范围
基于地源热泵的便携式岩土热物性测试仪的研制与应用
摘要:地下岩土的热物性参数是地源热泵地热换热器设计中所需要的很重要的参数。为了能够现场测量地下岩土的热物性参数,研制了便携式测试仪器。该测试仪可现场采集数据,再利用参数信号方法便可确定地下岩土的热特性参数。概述了岩土热物性测试仪的检测原理、结构及检测结果,并指出了该检测仪的推广应用前景。 关键词:地源热泵 岩土热物性 测试仪 单片机 地源热泵手统与其它空气调节系统相比优点突出。由于地层深处温度常年维持不变,远远高于冬季的室外温度,而又明显低于夏季的室外温度。因此地源热泵克服了空气源热泵的技术障碍,且效率有很大的提高。另外它还具有噪音低、占地面积少、不排放污染物、不用抽取地下水、运行计维护费用低、寿命长等许多优点。 设计地源
[应用]
图文解析便携式移动终端内部电源系统EMI干扰对策
  随着电子产品的高性能化,多功能手机、高端数码相机等电子产品的功能复杂性不断增大,除数字电路外,还集成蓝牙等 无线 通信 功能。除普通的辐射干扰以外,广泛的功能继承带来不容忽视的内部 EMC 问题。本文介绍内部 电源 系统 EMI 产生的原因、 以平板电脑和智能手机为例研究灵敏度下降原理及内部系统电磁兼容问题对策。   内部电源系统的EMI产生的原因    移动 终端的高速芯片低电压供电,降低EMC工作余量   无线设备和数字设备的共用    接口 通信速度的提高   汽车应用中电子控制的普及   什么是内部系统的电磁兼容?   内部系统的电磁兼容是存在于数字电路与无线电路间的干扰问题。以笔记本电脑为
[电源管理]
图文解析<font color='red'>便携式</font>移动终端内部电源系统EMI干扰对策
基于LabVIEW的便携式汽车仪表检测仪的研制----硬件系统和软件
  3.2硬件系统的作用   汽车仪表检测系统的硬件系统主要包括工控机、PXI板卡、信号接线盒、数据通信转换板卡、CAN卡、可编程网络电阻、供电电源以及被检测仪表等主要部分。在此硬件平台基础上,通过频率脉冲信号发生板卡产生不同频率的各种汽车仪表所需要的脉冲信号,给车速表和里程表,因为这两个表的指针偏转或显示数字变化的大小是根据不同幅值不同频率的脉冲信号变化而变化的,在根据相应的频率对应着相应的车速和里程,当我们测试时就可以按照标准的频率对应着车速和里程来判断仪表的准确度如何。   整个测试系统硬件功能框图如图3-13所示。      在硬件系统中我们利用LabVIEW产生一待测仪表可以接受的在量程范围内的信号给待测仪
[测试测量]
基于LabVIEW的<font color='red'>便携式</font>汽车仪表检测仪的研制----硬件系统和软件
智能化键盘的设计及其在便携式产品中的应用
    摘要: 介绍一种利用GMS97C2051单片机设计的智能化键盘系统,给出其硬件电路及软件设计,并简要阐述其在便携式产品设计中的应用。     关键词: 智能化键盘 单片机 键值 I2C 便携式产品 GMS97C2051 键盘(keyboard)是智能化测控系统主要的信息输入方式,是实现人机对话的重要途径,因此如何有效地控制键盘并为系统服务是每个设计者需要切实考虑的问题。在由单片机系统构成的便携式产品设计中,由于单片机硬件资源比较紧张,而键盘控制又需要占用大量的硬件资源(I/O口)。为此,笔者利用低价位的单片机GMS97C2051设计了一种智能化的键盘,键盘(key value)通过串行接口I2C
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved