以CMOS技术实现的微型化毫米波传感器

发布者:zhaodawei617最新更新时间:2017-05-18 关键字:CMOS技术  微型化毫米波  传感器  带宽 手机看文章 扫描二维码
随时随地手机看文章

大多数商用雷达系统,特别是高级驾驶员辅助系统 (ADAS) 中的雷达系统,均基于锗硅(SiGe)技术。目前的高端车辆都有一个多芯片SiGe雷达系统。虽然基于SiGe技术的77GHz汽车雷达系统满足自适应巡航控制时的高速度要求,但它们体积过大、过于笨重,占用了大量电路板空间。


随着车辆中雷达传感器数量的不断攀升,目前车辆中至少有10个雷达传感器(前置、后置和车角),空间上的限制就要求每个传感器必须体积更小、功耗更低,并且性价比更高。某些正处于开发阶段的现有雷达系统将促使发射器、接收器、时钟和基带功能集成在一个单芯片内,而这将把前端芯片的数量从4个减少到1个,不过这只适用于雷达前端。


通过充分利用互补金属氧化物半导体(CMOS)技术,并将嵌入式微控制器 (MCU)和数字信号处理(DSP)以及智能雷达前端集成在内,TI已经将集成度提升至新高度。前端具有处理功能将尽可能降低雷达系统尺寸、功率、外形尺寸和成本,从而进一步实现车辆内多个雷达系统的安装。


1.png

图1:由CMOS实现的单芯片集成


CMOS技术的传统优势包括更高的晶体管密度和更低功率。CMOS内的数字缩放降低了功率,缩小了尺寸,并且提高了每个节点的性能。在数字晶体管改进的推动下,CMOS的速度不断提高,现已足以满足79GHz ADAS应用的需要了。


79GHz波段提供4GHz带宽,这对更高范围的分辨率至关重要。未来的雷达系统还将需要对短距离的支持,将更佳的角分辨率转化为雷达系统内的更多天线。采用CMOS技术的TI传感器能够支持此项扩展能力,实现高容量的大批量生产。


CMOS技术进一步提高了TI在模拟组件中嵌入数字功能的能力,从而实现了在雷达系统部署方面的全新系统配置和拓扑。例如,TI单芯片毫米波(mmWave)传感器内的嵌入式MCU可实现射频(RF)和模拟子系统的半自主控制。TI的CMOS传感器为模拟组件提供数字辅助,以便适应环境和生产过程中的变化,同时保持灵活性和稳健耐用性,数字辅助能够灵活生成调频信号并能实现实时高级自监控。


一个雷达系统的动态范围取决于接收器噪底,以及在保险杠反射所导致的自干扰下的耐受能力。而这在很大程度上取决于架构和系统能力,这样就使一个CMOS系统——具有更宽的中频(IF)带宽、更多信道和精确的低噪声线性闭环调频信号生成——对于特定的雷达应用具有出色的系统级性能。


CMOS技术改变了毫米波传感器的设计,并嵌入更高的智能化和功能性。CMOS技术已经使TI能够提供高性能、低功率毫米波传感器产品组合,涵盖了从高性能雷达前端到单芯片雷达的整个范围。


其它资源

  • 进一步了解毫米波传感器产品组合。

    o汽车毫米波产品组合。

    o工业毫米波产品组合。

  • 阅读我们的白皮书

    o“TI智能传感器实现了自动驾驶”

    o“毫米波基础知识”

  • 阅读我们的博客

    o“用TI 毫米波传感器为汽车带来高级视觉”

    o“用毫米波传感器将全新的智能化引入工业应用。”

  • 在TI Design参考设计库搜索一个汽车和工业设计。


关键字:CMOS技术  微型化毫米波  传感器  带宽 引用地址:以CMOS技术实现的微型化毫米波传感器

上一篇:TI推出业界最高精度单芯片毫米波传感器产品组合
下一篇:7款 ADI 最新超低噪声、超低功耗 MEMS 加速度计,可上天入地

推荐阅读最新更新时间:2024-03-30 23:50

电机扭矩测量和传感器精度对不上怎么办 扭矩测试关键因素
对于测试系统每每说到测试精度,人们一定会问系统精度能做到多少,因为大家都知道测试系统的精度受多种因素影响,绝非是简单的测量仪器精度所能保证的。今天就说说电机测试系统中的扭矩测量精度如何保证。 在电机测试系统当中,扭矩的测量往往是通过扭矩传感器来实现的。下图是典型的电机扭矩测试方式: 被测电机通过联轴器连接扭矩传感器,扭矩传感器另外一端通过联轴器连接负载电机。系统工作时,被测电机工作在速度环(或扭矩环),负载电机工作在扭矩环(或速度环),扭矩传感器测量扭矩大小并将扭矩值通过信号传送给测量仪器。了解了扭矩测试过程,我们就可以找到扭矩测试的关键因素点,第一:扭矩传感器的测量精度;第二:测试仪器的测量精度;第三:电机(被测和负载)
[传感器]
中科院上海微系统所推出无线倾角传感器网络解决方案
一项无线倾角传感器网络解决方案最近由中国科学院上海微系统与信息技术研究所推出。该所微系统信息网研发中心的这项解决方案是由MEMS倾角传感器和MSN微无线传感器网络组成的。MSN微无线传感网络是一个适用于多种行业、多级距离、无线传输、以数据处理为主的无线传感器网络,目前已经发展形成多个系列。每个系列由若干微网端机组成,网络的规模和性能可以根据应用要求灵活定制。 无线倾角传感器网络作为一种实时、精确、高效和分布式的状态监测解决方案,尤其适合于大坝、桥梁、建筑物、高压电力线铁塔、盘山公路等大型工程的状态检测。根据网络功能定义和规模的不同,微无线倾角传感网也将很容易地应用到大型平台的水平保持、车载卫星天线与卫星的跟瞄、巨型舰船的船体平稳
[焦点新闻]
基于WiFi技术的无线温度传感器设计
1.概述   随着无线传感器网络技术的不断发展,它已经被广泛应用到工业、农业、医疗、航空航天以及海洋开发和探索等各个领域中,并解决了很多工程问题。在工农业领域,无线传感器技术的一项重要应用是对环境温度的监测,本文介绍了一种基于WiFi技术的无线温度传感器,描述了其工作原理、设计方案和使用情况。    2.系统结构   本系统主要由无线Wi-Fi传感器模块、接收计算机组成。其核心部分是Wi-Fi无线传输模块。无线传感器网络中的终端节点模块直接和温度传感器节点相连接,通过Wi-Fi把传感器的数据传输到上位机,以进行进一步的数据处理。为了更方便地处理现场数据,本系统还设计了基于LabVIEW的上位机程序。    3.硬件设计
[医疗电子]
基于WiFi<font color='red'>技术</font>的无线温度<font color='red'>传感器</font>设计
保隆科技自主研发的汽车五合一光学传感器解读
五合一 传感器 保隆科技自主研发的五合一传感器全称“雨量光线阳光温湿度HUD传感器”,是一种能够检测降雨量、环境光照度、红外辐射强度、温度、相对湿度,从而在整车上实现自动雨刮、自动大灯、自动空调、自动除雾、HUD亮度调节等功能的传感器。 五合一传感器可以减少驾驶人员操作,提高驾驶的安全性和舒适性,是汽车智能化发展及进一步提高安全性的必要传感器之一。 应用场景与功能 五合一传感器对于汽车雨刮系统、照明系统、空调系统、HUD系统、自动除雾功能等至关重要,能够提高车辆的舒适性与安全性。 配合雨刮系统:当挡风玻璃有雨时,自动启动雨刮系统,并根据雨量大小、泼溅等不同工况自动调整雨刮刮速,并且可以进行熄火后的雨天自动关窗并输出雨量等级
[嵌入式]
保隆科技自主研发的汽车五合一光学<font color='red'>传感器</font>解读
基于MSP430F149的无线环境监测传感器系统设计
引言   传感器技术与通信技术、计算机技术相结合构成的智能传感器以其较高的精度、良好的可靠性、功能的多样性等特点在过程控制以及信号监测中得到人们的关注, 已成为当今国内外研究的一大热点。本文设计了一种用于对环境信息进行实时监测的无线传感器系统, 在实际应用中能够对环境参数进行准确的测量并可靠传输, 体现了传感器系统数字化、智能化、无线化的优点。   该系统以MSP430F149 超低功耗微控制器为核心, 配置新式的微型低功耗传感器, 可实时地对所测环境的温度、湿度、光照强度、有害气体浓度等参数进行测量处理。采用电池供电,无线传输, 避免了布线的烦琐, 而且具有良好的便携性。 系统硬件设计   整个传感器系
[单片机]
基于MSP430F149的无线环境监测<font color='red'>传感器</font>系统设计
浅析自动驾驶的重要一环:感知系统发展现状与方向
在自动驾驶控制系统的架构当中,自动驾驶车辆的感知系统和定位系统作为车辆路径规划的依据,是至关重要的两个环节。最近的两篇文章将详细介绍自动驾驶车辆的感知系统和定位系统的基本结构、发展现状和未来发展方向。本文将从感知系统的传感器技术讲起。 自动驾驶控制系统循环架构 一、传感器分类 自动驾驶车辆上所配备的传感器可分为三大类: · 自感应传感器(Self-senseing): 自感知使用本体感应传感器(Proprioceptive Sensor)来测量车辆的当前状态,包括车辆的速度,加速度,横摆和转向角。本体感应信息通常使用预先安装的测量单元来确定,例如里程表,惯性
[汽车电子]
浅析自动驾驶的重要一环:感知系统发展现状与方向
MEMS压力传感器应用
MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采
[工业控制]
MEMS压力<font color='red'>传感器</font>应用
智能汽车使用以太网架构是否能解决数据带宽和传输问题?
随着智能汽车中大量传感器的使用,数据量迅速增加,而这些数据给传输环节带来巨大挑战。 Maxim Integrated汽车事业部执行总监Balagopal Mayampurath在接受采访时表示,这一挑战主要体现在三个方向。 挑战一是信号传输系统必须大幅度提升带宽,这一需求在未来三年至少提高25倍。挑战二是智能汽车内部大量设备的采用,使得信号互联的复杂度大大增加。挑战三是必须保证来自摄像头等传感器数据的完整性和安全性,传感器数据要安全地传输到处理单元,处理单元要把信息转输到显示屏上,这些环节都需要正确的信号传输,这样才能确保智能汽车运行的安全。 据Strategy Analytics预测,从今年到2020年,带宽需求预计
[嵌入式]
智能汽车使用以太网架构是否能解决数据<font color='red'>带宽</font>和传输问题?
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新物联网文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved