LED光谱量测量中的若干问题初探

最新更新时间:2011-05-22来源: 中国LED网关键字:单色仪  光谱  白光LED 手机看文章 扫描二维码
随时随地手机看文章
  今年是发光二极管(LED)诞生40周年,但只有到5年前白光LED开发成功后,对LED进行光谱测量才提上日程。迄今,白光LED的法向发光强度已达10cd以上,光效已超过25lm/W[1]。由于它具有10万小时的寿命,微秒级的响应时间,光效已超过白炽灯;并且体积小,结构牢固。所以继卤钨灯、荧光灯之后,它成为第三代照明光源的趋势已成为必然。目前白光LED的制造途径主要有三种:

  (1)利用InGaN/GaN兰光芯片,结合激发光为黄光的荧光物质YAG复合成白光;

  (2)利用红、绿、兰三基色通过各自比例的调整,复合成白光;

  (3)在ZnSe单晶基板上形成ZnCdSe薄膜,通电后薄膜发兰光,它与基板产生连锁反应发出黄光,复合成白光。
  故各种白光LED离开等能白的色品坐标,即WE(0.3333,0.3333)的差距各不相同,从而对应的色温、色纯度和显色指数等参数也各不相同,所以对它进行光谱量测量的重要性不言而喻。
  准确测试LED各类光电参数对改善LED的性能作用颇大,其中光谱量的测试基本上有三种方法,一是把测量光用若干块不同波长的带通滤光片过滤后到达光探测器,光探测器一般用光电倍增管和硅光电二极管。二是把测量光经衍射光栅分光后到达线阵CCD电荷耦合器件。三是用单色仪分光后进行测量。前面两种方法主要用于便携式光谱测试仪对LED进行多参数一次性快速测量,用同一结构配置的硬件测量多个参数必然降低测量精度,后一种方法计量部门运用较多,能得到高精度的测量值,但测量时间较长。对单色LED主要测定其峰值波长和半宽度(FWHM),对白色LED主要测定其相对功率分布,从而推导出其色品坐标,主波长、色温、色纯度和显色指数等参数,所以是光谱量测量的重点对象。

2单色仪使用中的一般技术

  (1)光栅的准确对焦:目的是使被测光源的光达到光栅时能充满光栅,以便减小光通过单色仪后的衰减率。光斑太小使出射光的信号减小,光斑尺寸超过光栅又会使这部分光变成杂散光而降低测量精度。所以入射光的配置必须符合所用单色仪的f/D数,使得与LED匹配的透镜能使被测光正好临界地充满光栅。

  (2)狭缝尺寸的设置:一般使出、入射狭缝等宽度,这时所得信号形状为等腰三角形,否则将变成梯形甚至更复杂的形状。狭缝的宽窄应根据被测光的强弱同步调节。狭缝的高度也要相应限制,这只能靠在出、入射狭缝前后放置各种宽度的平行光阑达到,因为单色仪一般并没有调节狭缝高低的功能。狭缝尺寸过大会降低光谱量的纯度,当仪器的最小实际带宽不大于设置带宽的1.2倍时,将得到最小的光谱带宽。

  (3)波长鼓的使用:首先,由于气温变化造成波长尺的热胀冷缩,必须在紫外,可见和红外波段定期予以校正,校正时常用发射波长的低压汞灯、氘灯,见表1和表2所示[2]。

表1 可采用的低压汞灯的发射波长 nm

编 号

1

2

3

4

5

6

波 长

226.22

230.21

248.20

253.65

275.28

296.73

编 号

7

8

9

10

11

12

波 长

302.15

313.18

365.02

365.48

366.33

404.66

编 号

13

14

15

16

17

18

波 长

435.83

491.60

546.07

576.96

579.00

690.72

编 号

19

20

21

22

23

波 长

1014.0

1128.8

1364.6

1349.1

1529.6

表2 氘灯的发射波长 nm

编 号

1

2

波 长

486.02

656.10

  之所以在表中列出紫外和红外波长是考虑到LED在军用夜视仪和电器遥控器中的应用。其次,变换波长时必须由大到小或由小到大顺序进行,不可来回反复,否则会造成波长示值不准确。

  3单色仪使用中易被忽略的问题

  (1)狭缝散射函数[3]:单色仪从本质上讲,是波长连续可变的滤波器。根据滤波理论,一个滤波器的输出信号是输入信号和滤波器传递函数两者的卷积。故滤波器输出端的信号,一定要去除卷积,即解出卷积方程,才能得到真实信号。因为单色仪的仪器函数不是一个δ函数,单色仪出射的量不会具有100%的纯度。所以用单色仪测量一个光谱量,若不经过狭缝函数的修正,必然会使光谱形状发生畸变,俗称仪器加宽,具体说就是谱线加宽和分辩率降低。为了简化狭缝散射函数的确定,一般情况下应把单色仪的入、出射狭缝设置成等宽度,因这时得到的狭缝函数形式上最简单。

  (2)光谱分辩率:如上所说,经过单色仪分光后的值是单色仪的带宽和LED实际发出光谱的卷积。倘若LED的光谱带宽大于单色仪的光谱分辩率,则被测光谱不会因带宽引起变化。相反地,一个窄带的单色LED在通过低光谱分辩率的单色仪时光谱会引发变化。表3显示了一个半宽度(FWHM)约20nm的红色LED通过设置成不同带宽的单色仪时其光谱分辩率对测量结果的影响。

表3 不同单色仪狭缝对一支红色LED测量的影响[4]

输出波形带宽(nm)

主导波长(nm)

质心波长(nm)

FWHM(nm)

0.5

634.18

644.71

20.75

1

634.16

644.59

20.80

2

634.13

644.62

20.95

5

633.91

644.56

21.82

10

633.26

644.44

24.49

  由表可见,随着狭缝的增大,其输出波形的带宽增加,主导波长和质心波长顺序减小,而输出波形的半宽度顺序增加。所以狭缝的增加会使被测光的单色性变差。由表3还可知,在测量精度范围内当质心波长几乎不变的同时峰值波长的半宽度(FWHM)却有显著的增加,结果导致主导波长漂移近1nm。一个数学模型以较高的仿真度显示了LED的光谱宽度与色品坐标及主导波长间的关系[5]。

  (3)光学动态范围:它的大小取决于单色仪光学器件和配套电子仪器的质量好坏。大的动态范围有助于提高测量精度以及色品三刺激值的纯度,表4表示了一支红光LED在各种动态范围下色度测量值的变化。

表4 一支红色LED动态范围变化时的测试结果[4]

动态范围

x色坐标

y色坐标

主导波长(nm)

刺激值纯度

10E2

0.675

0.282

648.1

87%

10E2.5

0.701

0.286

637.0

96%

10E3.5

0.714

0.287

634.3

100%

  由表可见,随着动态范围的减小,色品刺激值的纯度也显著减小,主导波长也向长波方向漂移,并且色品坐标也减小了。所以对LED进行色度测量时,颜色饱和度是否达到100%是测量精度的一个重要判据。动态范围的减小与引入测量噪声的大小成正比。此外单色仪与CCD阵列器件的光谱仪相比,由于后者的动态范围小,致使测量所得的光谱波峰削减13%之多[4]。

  (4)杂散光:在进行光谱测量时,杂散光是影响测量精度的主要原因,即使采取了许多措施,也只能减少杂散光而不能完全排除它,尤其是在可见光谱的短波段,这种影响更加显著。因为在兰光区白光LED的光通量只占10%。再者,由于所测信号和杂散光混在一起构成测量信号,所以在400nm波长点,0.5%的杂散光就会引起5%的定标误差,对白光LED而言,由于其发光光谱与普朗克发射体的偏差较大,所以更容易产生大的测量误差,因为测量的计算程序通常只能根据普朗克黑体或灰体为基础编制。所以兰色LED相对窄的波峰相对于荧光物质宽的发射光谱应设计一个合适的权重,以提高色度坐标测量的正确性。表5列出了一支白光LED的测量结果。

表5 三台光谱仪对白光LED色坐标的测量结果[4]

光谱仪类型

杂散光屏蔽水平

X色坐标

偏差

y色坐标

偏差

光栅扫描

>10E-4

0.2894

0.3041

CCD阵列1

10E-3

0.2903

0.0009

0.3065

0.0024

CCD阵列2

10E-2.5

0.2915

0.0021

0.3098

0.0058

  这些值是在一个传统的单色仪和两个多通道快速测量光谱仪上做的,后者的光学动态范围较小。由表可见,由于前者的杂散光屏蔽设置较好,所以,测量结果的准确性较高,其误差程度在0.3%至2%之间;基于色品坐标的构成特点,y色坐标比x色坐标的误差要大1倍。由此还可看出,单就杂散光影响而言,当今商品化的多通道快速测量仪的仪器级别比C级还要低1倍以上[2]。

  4结束语
  白光LED合成的空间辐射的光谱测量必须考虑到多重因素的影响,不准确的分光测量不但会导致峰值波长及其半宽度的测量误差,还会导致大的色度测量误差。所以要求光谱测量仪器的光谱分辩率应小于0.5nm,其对杂散光的屏蔽水平应小于测量信号值的3个量级。

关键字:单色仪  光谱  白光LED 编辑:探路者 引用地址:LED光谱量测量中的若干问题初探

上一篇:LED照明的电源拓扑结构
下一篇:照明LED的阵列研究与仿真

推荐阅读最新更新时间:2023-10-18 15:20

一种用于白光LED驱动的电荷泵电路设计
0 引 言 目前用于白光驱动的升压型电路主要有电感型DC-DC电路和电荷泵电路。电感型DC-DC电路存在EMI等问题,而电荷泵电路结构简单,EMI较小,得到了广泛的应用。 白光LED驱动的电荷泵主要有两种类型:电压模式和电流模式。相对于电压模式可能造成每个LED亮度不匹配的缺点,电流模式每路单独输出恒定电流,使亮度可以较好地匹配,而且不需要外围平衡电阻,大大节省了空间。 本文设计了一种用于白光LED驱动的电流型电荷泵电路。采用1.5倍压升压,比传统的2倍压升压模式提高了效率,并采用数字调光方式,可提供32级灰度输出,满足不同场合的要求。系统结构如图1所示。主要可分为以下部分:带隙基准电路,软启动电路,振荡器,1.5倍
[电源管理]
升压IC可提升白光LED的电池电压
白光LED正一路杀入白炽灯以前大行其道的许多市场。闪光灯进入了更新型的应用领域,其中其所展显出的可靠性、耐久性以及 LED 功耗控制能力使这些器件极具吸引力。在采用白炽灯时,对器件的电源管理只是简单的开关切换。然而 LED 不能直接采用闪光灯中典型的两个电池进行操作,因为它们要求的电压是介于 2.8~4V 之间的,而相比之下电池电压只有 1.8~3V。电源管理的复杂性有所增加,因为 LED 的光输出与电流相关,而 LED的特征与电压呈现出极端非线性的关系。解决此问题的方法之一是提高电源的电流限制。目前市场上有众多可用的 LED 应用器件;但是,对于闪光灯应用所需的 1~5W 功率而言,它们的额定电流通常都太低了。
[电源管理]
升压IC可提升<font color='red'>白光LED</font>的电池电压
基于压电振荡器的白光LED供能方法
接收单电池供电的LED驱动器正受到广泛关注。为由低电压电源产生能够点亮白光LED的高电压,主要需要某种电子振荡器,最简单的为压电蜂鸣 器。压电转换器特殊地用于振荡器和驱动白光LED(图1)。压电模片或弯曲板组成压电陶瓷片,带双面电极,用可传导粘合剂贴在黄铜、不锈钢或类似材料制成 的金属板上。电路使用三端压电转换器。在这个转换器中,模片在其中一个电极上有反应标记。电感和容性器件之间谐振产生振荡。工作的频率为:fOSC=1/ (2π ),在这里,L为电感值,C为压电元件的电容量。      随着图1电路中电压的最初作用,晶体管Q1打开。当晶体管传导时,电流通过电感L1逐渐增加,电压通
[电源管理]
基于压电振荡器的<font color='red'>白光LED</font>供能方法
一种高亮度白光LED调光电路设计[图]
随着能源危机的到来,高效的照明技术得到人们广泛的关注。发光二极管LED(Light Emitting Ddiode)是利用半导体PN结或类似结构把电能转换成光能的器件,以其高效率、低功耗、低电压驱动、使用寿命长等优点,已在众多应用领域中得到普遍的应用,如各类消费电子产品——手机、PDA、液晶电视的背光光源等。高亮度LED是传统白炽灯的一种理想替代方案,因为前者的寿命和效率都比后者高得多,且不同于紧凑型荧光灯泡,这些LED能够在低温下工作。为提高LED照明电路的使用性能和适用范围,本文将介绍一种具成本优势的高亮度白光LED(HBLED)调光方法。 对于HBLD而言,在高照度工作条件下导通电压高达3~5 V,工作电流可达0.15~3
[电源管理]
一种高亮度<font color='red'>白光LED</font>调光电路设计[图]
直读光谱仪故障及其相应处理办法集合
  直读 光谱仪 常见故障及其相应处理办法由直读光谱仪技术员根据数十年的经验总结分享如下:   故障一:新 仪器 电脑出现死机,程序错误、黑屏、分析软件的START状态不对有时变为黄色不动,有时虽然动但是变为红色,   处理办法:此为通讯线接触不良,重新连接即可。   故障二:排气不畅故障,氩气排气管路堵塞,火花室下部的弯头内有异物,氩气过滤器入口端有异物。   处理办法:更换排气管,要更换透明的塑料管,并定期对排气管路进行吹扫。   故障三:温度偏高故障   处理办法:检查仪器后盖风扇是否转动,转动是否灵活。   故障四:真空泵不自动启动故障,   处理办法:先看泵油温度是否较低,重新
[测试测量]
利用555定时器构成白光LED电压调节器的方法
本文以一个555定时器为主要器件构成电压调节电路(如图所示),用来控制一个或多个白光LED。定时器IC1与R1、R2、C2构成了可复位非稳态多谐振荡器。 首次输入电压V S 后,D1将使存储电容器C1充电直到其电压略低于V S 。最初,晶体管Q2处于截止状态,IC1的复位输入为高电平,输出端(OUTPUT)为高电平,以让电流能经过R1给C2充电。 这段时间内,R4拉动放电端(DISCHARGE)导通晶体管Q1,电感L1中的电流I L 开始斜线增大。由于Q1饱和,因此D3和LED都处于反向偏压状态。 当C2的电压超过IC1中管脚6的极限电压(THRESHOLD)时,输出端(OUTPUT)与放电端(DISCHARGE)
[应用]
东芝扩大用于LED照明的大功率白光LED产品阵容
东京 东芝公司(TOKYO:6502)旗下半导体与存储产品公司今日宣布将推出4款新产品,扩大其 TL1L4系列 大功率白光LED的产品阵容,这些大功率白光LED实现140lm(最小值)的高光通量。这些新产品的出货即日启动。 与 TL1L4系列 传统的130lm(最小值)的一般产品相比,全新的 TL1L4系列(4A5B类型) 实现了140lm(最小值) 的高光通量。这4款新产品的相关色温(CCT)分别为6500K/5700K/5000K/4000K,显色指数为Ra70。新产品可实现市场对灯具效能(超过110lm/W )的要求,并且有助于LED照明应用提高光效和降低功耗。 新产品概述
[电源管理]
东芝扩大用于LED照明的大功率<font color='red'>白光LED</font>产品阵容
RGB LED与荧光粉式白光LED浅谈
  RGB灯的成像原理   RGB灯是以三原色共同交集成像,此外,也有蓝光LED配合黄色荧光粉,以及紫外LED配合RGB荧光粉,整体来说,这两种都有其成像原理,但是衰减问题与紫外线对人体影响,都是短期内比较难解决的问题,因此虽然都可以达 到白光的需求,却有不同的结果。   RGB在应用上,明显比白光LED来得多元,他举例,如车灯、交通号志、橱窗等,需要用到某一波段的灯光时,RGB的混色可以随心所欲,相较之下,白光LED就比较吃亏,因此当然在效果上比较强。从另一方面上来说,如果用在照明方面RGB LED灯又会比较吃亏,因为用在照明方面主要还得看白光的光通量,寿命及纯色方面,目前来讲RGB LED灯主要还是用在装饰灯方面。   
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved