对目前常见的白炽灯泡或是荧光灯、省电灯泡来说,即便产品本身运行可能产生热能,但组件的高热仍可以被有效隔离,使光源与电源接座不会因热而产生意外的公安问题。但led固态照明就不同,一来LED组件集中单点的运行高温,必须采取更多积极手段进行散热处理,同时搭配主动有效的热处理机制,才能避免灯具发生公安问题...
传统光源或灯具多有运行过程产生高热的问题,例如卤素灯泡或白炽灯泡,若是白炽灯形式,即在特殊处理的灯球环境内加热钨丝产生光亮。
实际上,高温产生在灯丝上而非灯座,即便灯座会因灯球玻璃或是金属受钨丝发光的辐射热、热传导间接产生高温,但产生的温度都在可接受的安全范围,再加上非直接接触传导,安全性也相对较高。
LED固态光源 热处理问题较传统灯具复杂
但换成LED固态光源形式的灯具,其热处理便可能成为新的应用安全问题。多数人会认为LED具高能源转换效率、低驱动能源优势,自然使用安全性较高,但实际上LED固态光源为了达到日常照明的应用目的,必须透过加大单组组件的功率去强化单元件的输出流明,例如灯具厂会采取多LED组件整合形式加强输出效果,且多组件同时运行也能改善LED固态光源光型偏向点光源的问题,让LED固态光源技术的灯具可产生如灯泡般的面光源效果。
在开发现场,欲强化单元件的输出流明,必须施加更高的电流,以使LED芯片的PN接面产生更多流明,但更高电流也会让单点LED组件的温度升高、更难处理,甚至为了提高灯具的光型表现、发光效率而采取多组件并用形式,也会使LED灯具的高温问题加剧,让散热问题更难处理。
综观目前LED灯具市场的发展趋势,多数LED光源的模块厂大多会先以利基市场产品为开发主力,因为高单价、高利润,也可以借由技术差异迅速打入发展技术较前卫的LED光源市场,例如,针对室内装潢、情境灯具应用的嵌灯、壁灯、吸顶灯就成为LED光源灯具较常见的设计形式,其替换传统灯具后的省电效益亦最受相关业者关注。
基本上,LED光源灯具必须重点处理的热管理设计,在可能于密闭或半密死循环境使用的嵌灯、壁灯、吸顶灯产品,形成更严苛的挑战,灯具开发商必须从材料、产品构型、主/被动散热机制、驱动芯片设计等方面投入更多资源,以避免产品的公安问题肇生。
LED嵌入式灯具体积小,且常采多组件整合,模块的散热设计难度较高。
NTC持续监控运行温度 维持LED灯使用安全
若LED灯具没有搭配足够的热管理设计,在使用过程中可能会导致灯具因为经常性高热运行造成寿命锐减,产生必须频繁更换故障LED灯具的困扰,严重者甚至可能酿成公安意外,因运行高温造成线路或是周边装潢着火燃烧!
在产品开发阶段,可运用智能型LED灯光控制技术,透过主动式的监看LED灯具与整体光源模块的温度表现,简化装置的热管理工作,同时当灯具与环境周遭温度上升至危险区段时,灯具必须降低电功率、减少LED亮度输出,以此提升LED固态光源灯具的使用安全性。
考虑较简单的设计形式,若灯具本身所使用的驱动器功能较聚焦于电源转换与LED组件驱动,并未内嵌温控微处理器与散热处理模块,为避免增加产品原料件的成本,LED灯具可整合NTC(Negative Temperature Coefficient)负温度系数Thermistor Sensors电路,是成本效益相对较高的安全设计方案。
所谓NTC电路,其设置目的是藉由透过电子回路去监看LED的模块灯具温度,透过默认温度警示或是对应自动处理驱动状况,采关闭LED固态光源模块方式,来提升LED灯具的使用安全,同时NTC电路也能降低设计的复杂度。
由于NTC电路的温度系数非常大,因此可以侦测得知微小的温度变化表现,被广泛应用于需量测、控制与补偿温度的相关电路设计中,而NTC电路在LED光源模块设计中,基本上为量测LED固态光源灯具的产品周边温度变化,至于量测状况会随着NTC改变的电压现况,直接测得电压和NTC电路的温度对应关系。
当NTC和周边电路或整个模块温度提升时,NTC监控电路的电阻随即降低,产品可依此相依关系进行相关安全控制机制反馈,例如减少LED发光组件的驱动电流或是直接强制关闭灯具照明,在灯具温度问题改善后自动回复照明状态,藉此获得灯具使用的安全性。
采SMD形式制作的NTC THERMISTOR组件。
监看LED灯具温度 亦可导入MCU微控制器达到智慧监控
前述NTC电路的改善形式,若想达到更佳的保护设计,搭配MCU进行更精密的安全设计也是一种相对务实的作法,在开发项目中,可将LED光源模块的状态区分为灯光是否正常开启、灯光是否被关闭,搭配温度警示与温度量测的程序逻辑判断,建构更为完善的智慧灯具管理机制。
例如,若出现灯具温度警示,经温度量测得知模块温度仍在可接受范围,可维持正常途径,透过散热片自然散逸运行温度;而当警示告知所测得温度已达需执行主动散热机制的基准,此时MCU必须控制散热风扇作动,甚至当温度达到危险值,系统必须透过MCU直接关闭驱动器供应电源,让整体电子回路、LED组件暂时停止运行,自然进行散热处理。
判断灯具是否开启或关闭,可用简单的判断位来做变化与了解产品目前使用状态,比较关键的是温度量测部分,所量测的温度必须实时与系统的参照表进行比对,以确认目前模块状态的正常或异常程度,计算出温度间距后,自动对应进行温控管理。
同样的,当温度进入危险区段时,控制机制应随即关闭灯源,同时在系统关闭后60秒或180秒后再次进行温度确认,待LED固态光源模块温度达正常值,再重新驱动LED光源,继续提供照明。
嵌入式灯具外壳采铝挤型或散热片设计,可发挥自体散热作用。
上一篇:LED照明应用亟待解决的几大关键性技术问题
下一篇:LED照亮一切 如何掌握好与发光效率的平衡?
推荐阅读最新更新时间:2023-10-18 15:24
- 热门资源推荐
- 热门放大器推荐
- blinker_app_control_the_led_on_the_feather_border.
- 【用户手册】带+STM32MP157+MPU+的评估板
- 发电厂电气部分 第五版 (苗世洪)
- 发电厂电气主系统 第3版 (许珉,孙丰奇,车仁青)
An error occurred.
Sorry, the page you are looking for is currently unavailable.
Please try again later.
If you are the system administrator of this resource then you should check the error log for details.
Faithfully yours, OpenResty.
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 点评《让世界更安全——TI Hercules开发实战手册》,精彩好礼等你拿!
- TI直播:精讲“双向CLLLC谐振、双有源电桥(DAB)参考设计”
- 有奖直播|恩智浦嵌入式人机界面解决方案详解
- 我们猜啦!MDO3000之竞猜有奖:免费的部分会值多少?
- Microchip 喊你快来打造你的理想型单片机,智能门铃、百元京东卡等【80份】好礼等你赢!
- 直播已结束|富士通铁电随机存储器无加密算法真赝验证解决方案
- Avnet&On semi 带你看未来,3个你必须知道的行业趋势!
- 点评《与Atmel SAM D21/R21的相遇、相识、相知(上)》,赢温暖新春礼
- 福禄克明星款热像仪全新来袭,抢先免费体验赢好礼
- TI汽车方案拼图,你敢挑战吗?