解读:陶瓷材料在LED照明散热中的应用

最新更新时间:2011-07-23来源: OFweek半导体照明网关键字:陶瓷材料  LED照明  LED封装  LED散热 手机看文章 扫描二维码
随时随地手机看文章

  引言

  LED是一种新型固态光源,自问世以来受到了极大的关注。它的发光机理是靠PN结中的电子在能带间跃迁产生光能。在外电场的作用下,电子与空穴的辐射复合发生电致作用,一部分能量转化为光能,无辐射复合产生的晶格震荡将其余能量转化为热能。

  目前LED的发光效率仅20%~30%,其余能量大多转化为热能,大量的热能需要及时地散发出去,否则将会使LED的寿命减少,甚至永久性失效。所以,在LED快速发展的同时,人们也不断进行着LED散热新技术的研究。

  金属铝材凭借着密度小、热导率高、表面处理技术成熟的优势,一直占据着LED照明主体材料的市场。随着人们对安全性能要求的提高,铝材的导电性成为其一道致命的伤疤,为了提高LED照明灯具(下文简称为LED灯具)的使用安全性,电绝缘材料引起了人们的重视。

  开始崭露头角的电绝缘材料有陶瓷材料和高热导塑料。人类对陶瓷材料的使用已有几千年了,现代技术制备的陶瓷材料有着绝缘性好、热导率高、红外辐射率大、膨胀系数低的特点,完全可以成为LED照明的新材料。目前,陶瓷材料主要用于LED封装芯片的热沉材料、电路基板材料和灯具散热器材料。高热导塑料凭借着其优良的电绝缘性和低密度值,高调地进入了散热材料市场,现阶段由于价格高,应用率不大。本文主要讨论陶瓷材料在LED照明中的应用技术。

  1 陶瓷材料的传热机理

  陶瓷属于非金属材料,晶体结构中没有自由电子,具有优秀的绝缘性能。它的传热属于声子导热机理,当晶格完整无缺陷时,声子的平均自由程越大,热导率就越高。理论表明,陶瓷晶体材料的最大导热系数可高达320W/mK。

  一般认为,在影响陶瓷材料导热率的诸多因素中,结构缺陷是主要的影响因素。在烧结的过程中,氧杂质进入陶瓷晶格中,伴随着空位、位错、反相畴界等结构缺陷,显着地降低了声子的平均自由程,导致热导率降低。现代陶瓷技术通过生成第二相,把氧固定在晶界上,减少了氧杂质进入晶格的可能性,随着晶界处的氧浓度大大降低,晶粒内部的氧自发扩散到晶界处,使晶粒基体内部的氧含量降低,缺陷的数量和种类减少,从而降低声子散射几率,增加声子的平均自由程。由于制备技术的不同,陶瓷材料的热导率也不一样,常用陶瓷材料的导热系数如表1所示。

 

  

  陶瓷材料的热导率与添加剂含量也有着密切的关系。河北工业大学的梁广川等人对稀土氧化物Y2O3含量与密度和导热率的关系也做了实验研究。他们采用的一种氮化铝(AlN)陶瓷粉体为:平均粒度3m,氧杂质含量0.97wt%,添加剂为纯度99.95%的Y2O3。

  经过常压氮气环境烧结、抛光(光洁度0.25m)处理,粉体的Y2O3含量和导热系数关系如图1所示。由图1可知,添加适量的稀土氧化物Y2O3可以使氮化铝陶瓷的导热系数达到160W/mK左右,已经超过了压铸铝材ADC12的导热系数(ADC12的导热系数为96.2W/mK),完全可以用作散热器的制作材料。

 

  

 

  氮化铝陶瓷膨胀系数较低、导热系数高,常作为芯片封装的热沉。LED散热的一大瓶颈为电路基板,普通铝基板的导热系数仅1.0~2.5W/mK,不到陶瓷基板(如图2)的20%,采用陶瓷基板可以大幅度地降低LED的PN结温度(下文将简称为结温)。

 

  

 

  陶瓷电路基板可以通过流延法或共晶烧结制成,但价格较高,大规模应用为时尚早;陶瓷用作芯片封装的热沉部件,因几何结构简单,一些LED封装厂商已开始使用。上述二者主要是利用材料的导热性能将热量传导到散热器上,几乎不用考虑如何将热量散发到空气中,设计时关心的是它的导热系数。

  LED灯具的散热器用于将热量散发到周围的空间中,散热器常采用氧化铝(Al2O3)陶瓷材料(样灯如图3所示)。氧化铝陶瓷价格便宜,技术成熟,采用压铸烧结技术,设计自由度大,价格较低,现阶段得到一定规模的应用,下文将对此进行详细分析。

  2 陶瓷材料的热辐射机理

     我们知道,热交换的基本途径为:传导、对流和辐射。为了有效散热,人们常通过减少热流途径的热阻和加强对流系数来实现,往往忽略了热辐射。LED灯具一般采用自然对流散热,散热器将LED产生的热量快速传递到散热器表面,由于对流系数较低,热量不能及时地散发到周围的空气中,导致表面温度升高,LED的工作环境恶化。提高辐射率可以有效地将散热器表面的热量通过热辐射的形式带走,一般铝制散热器通过阳极氧化来提高表面辐射率,陶瓷材料本身可以具有高辐射率特性,不必进行复杂的后续处理。

  陶瓷材料的辐射机理是由随机性振动的非谐振效应的二声子和多声子产生。高辐射陶瓷材料如碳化硅、金属氧化物、硼化物等均存在极强的红外激活极性振动,这些极性振动由于具有极强的非谐效应,其双频和频区的吸收系数,一般具有100~100cm-1数量级,相当于中等强度吸收区在这个区域剩余反射带的较低反射率,因此,有利于形成一个较平坦的强辐射带。

  一般来说,具有高热辐射效率的辐射带,大致是从强共振波长延伸到短波整个二声子组合和频区域,包括部分多声子组合区域,这是多数高辐射陶瓷材料辐射带的共同特点,可以说,强辐射带主要源于该波段的二声子组合辐射。除少数例外,一般辐射陶瓷的辐射带集中在大于5m的二声子、三声子区。因此,对于红外辐射陶瓷而言,1~5m波段的辐射主要来自于自由载流子的带内跃迁或电子从杂质能级到导带的直接跃迁,大于5m波段的辐射主要归于二声子组合辐射。

  刘维良、骆素铭对常温陶瓷红外辐射做了研究,测试的陶瓷样品红外辐射率约0.82~0.94,对不同表面质量的远红外陶瓷釉面也进行了测试,辐射率约0.6~0.88,并从陶瓷断口SEM照片中得出远红外陶瓷粉在釉中添加量为10wt%时的辐射性能、釉面质量、颜色和成本较佳,其辐射率达到了0.83,其他性能均达到国家日用瓷标准要求。崔万秋、吴春芸对低温远红外陶瓷块状样品进行了测试,红外辐射率为0.78~0.94。李红涛、刘建学研究发现,常温远红外陶瓷辐射率一般可达0.85,国外Enecoat釉涂料最高辐射率可达0.93~0.94。众多研究均表明,陶瓷材料或釉面本身具有很高的红外辐射率,是其替代传统铝制散热器的一大重要参数。

   3 氧化铝陶瓷材料的LED照明灯具研究

  3.1 陶瓷LED灯具实验测试

  氧化铝陶瓷的导热系数与氧化铝的成分(纯度)有很大的关系(如表2所示)。常用的Nom.95%氧化铝陶瓷(简称为95陶瓷)导热系数约22.4W/mK,耐压10kV/mm,由此制成LED灯具的样品如图4所示。

 

  

  

  灯具型号为GU10,外形尺寸49.5mm×50mm,鳍片散热器和灯座均采用95陶瓷材料,并通过螺纹连接。

  灯具安装三颗Handson(汉德森)LED光源,内置恒流驱动电源,总消耗功率约3.55W,采用透镜配光,总光通量约150lm。

  由于LED的结温不能直接测得,常采用间接测试法,目前主要有2种:

  ①电参数法:LED随着结温的上升,两端电压呈线性降低,比例系数K的典型值为4mV/℃,结温可按式(1)进行计算;②热电偶间接测试法:通过测试LED焊脚的温度sp间接得到结温值,此时结温可按式(2)进行计算。

  

  式中:为结温,0为初始温度,K为比例系数,△F为电压变化的绝对值。

  

  式中:为结温,sp为LED焊脚的温度,th为PN结到焊脚的平均热阻,为芯片功率。

  本次进行温度测试的方法为热电偶测试法。LED焊脚测试点为两处,灯体散热器测试点为三处,环境温度采用两根热电偶测试,测试结果如表3所示。

 

  

 

  3.2 陶瓷LED灯具和铝制压铸LED灯具的计算机仿真

  为了研究和设计陶瓷LED灯具,我们借助计算机软件进行仿真分析。本次采用的流场分析软件为Flo-EFD(简称EFD,EngineeringFluidDynamics),EFD为NIKA的旗舰产品,主要用于汽车、航空航天、机械、船舶、电子通讯、医疗器械、能源化工、暖通、流体控制设备、LED半导体行业等。软件可进行各种LED封装产品、航空航天灯、各种节能灯、LED发光管、车用灯具、显示屏等的热分析。

  为便于与实验测试进行比较,计算机仿真分析时,将环境温度设为15℃,得到的温度分布如图5所示(为便于查看,隐藏了透镜及其固定部分)。为了比较95陶瓷灯具与铝制压铸灯具的热学性能,通过计算机仿真得到的温度分布如图6所示(灯具散热器材料为铝合金ADC12,灯座为PBT塑料,其余参数不变。)

 

  

  3.3 结果分析

  陶瓷灯具的灯座为95陶瓷材料(铝制压铸灯具的灯座为PBT塑料),各部件得到了充分的利用。实验测试时,1.0h基本达到热平衡,环境温度的算术平均值约14.4℃,将实验测试和计算机仿真的温度分布值进行分析比较,结果见表4所示。

 

  

 

  计算机分析结果显示,自然对流情况下,95陶瓷灯具的热学性能不亚于铝制压铸灯具,陶瓷灯具可以充分利用各个零部件的几何特征,所以灯具的整体温度降低到了较低水平。

  4 陶瓷材料用于LED照明灯具的前景

  陶瓷的使用具有悠久的历史,现代工艺制备的陶瓷材料导热率较高,空气自然对流下,完全可以充当LED照明灯具的散热材料。氮化铝陶瓷可以直接作为封装晶架或线路层;氧化铝陶瓷价格便宜,烧结技术成熟,可釉成不同颜色,由于其电绝缘性能优良,并耐酸碱性,受到很多客户的青睐。但是,陶瓷材料并不是完美无瑕的,陶瓷散热器鳍片不能太薄(厚度≥1.5mm),密度稍大(约为铝的1.5倍),中高应力下会产生裂纹,无釉表面容易污染等。

  总的来说,陶瓷材料用于LED的前景良好,特别适于体积较小的照明灯具。

关键字:陶瓷材料  LED照明  LED封装  LED散热 编辑:探路者 引用地址:解读:陶瓷材料在LED照明散热中的应用

上一篇:常用汽车电子系统应用LED驱动解决案例分析
下一篇:详解LED背光液晶电视区域调光技术的机遇与难题 (

推荐阅读最新更新时间:2023-10-18 15:28

数据详解LED照明寿命
  美国环保署(Environmental Protection Agency, EPA)与能源部(Department of Energy, DOE),自2010年起陆续对LED光源灯具/灯泡发布能源之星(Energy Star? )及Lighting Facts标准,让相关业者的LED照明产品规格有所依循,目前国际LED大厂针对LED产品的寿命评估与产品规格,也以此为依据。也就是说,LED厂商若想打入国际LED照明市场,势必取得LED能源之星认证这张门票。   在能源之星部份,2011年7月6日,EPA为了简化资格审查程序,特别将住宅照明(RLF)及固态照明(SSL Luminaires)两大型态的灯具规范整合成【ENE
[电源管理]
数据详解<font color='red'>LED照明</font>寿命
讲解高功率LED照明灯的设计技巧
  一般的LED照明灯在驱动电路中都有限流电阻,而电阻消耗的电能与LED发光无关。为了提高效率,就要采用恒流输出的开关稳压电源,并在输出级采用功率MOSFET.   图1是这种驱动电路的方框图,它省略了传统电路的三角波发生器和误差放大器,而使用了CM0S逻辑IC和PWM调制器。当时钟CLK信号为低电平时,RS触发器处于复位状态,输出FET关断。而当CLK信号为高电平时,输出FET导通。其电流被电阻Rs转换成电压,当此电压高于基准电压Vref 时,比较器输出由高变低,RS触发器又被复位,输出FET再关断。其结果,即使电源电压有变化,储存在电感中的能量却是恒定的。实现了恒功率输出。这里是把Rs上的电压降作为三角波电压,PWM比较器将此
[电源管理]
讲解高功率<font color='red'>LED照明</font>灯的设计技巧
LED照明灯的基本概述及其特性
LED即半导体发光二极管,LED节能灯是用高亮度白色发光二极管发光源,光效高、耗电少,寿命长、易控制、免维护、安全环保;是新一代固体冷光源,光色柔和、艳丽、丰富多彩、低损耗、低能耗,绿色环保,适用家庭,商场,银行,医院,宾馆,饭店他各种公共场所长时间照明。 LED节能灯特性 1、 高效节能:一千小时仅耗几度电(普通60W白炽灯十七小时耗1度电,普通10W节能灯一百小时耗1度电) 2、超长寿命:半导体芯片发光,无灯丝,无玻璃泡,不怕震动,不易破碎,使用寿命可达五万小时(普通白炽灯使用寿命仅有一千小时,普通节能灯使用寿命也只有八千小时) 3、健康:光线健康光线中不含紫外线和红外线,不产生辐射(普通灯光线中
[电源管理]
智能LED照明系统设计流程探讨
随着led 技术、物联网技术及无线通信技术的发展,LED 照明颗粒以其无污染、寿命长、指向性好及便于运输等优点逐步发展到商业化阶段。由于我国LED 产业发展的不均衡以及部分相关工程人员LED 专业知识的欠缺,致使盲目使用LED 照明颗粒以及LED 照明系统设计的不合理现象的出现。从LED 照明颗粒原理及特点入手,结合工程实践经验讨论了LED 照明系统设计流程及注意事项,给出了解决相应问题的建议。   随着我国对于半导体照明技术的逐步重视,2003 年6 月国家半导体照明产业工程正式启动,2007 年12 月科技部和国家外国专家局联合批准了33 家单位建立国家级国际联合研究中心,中科院半导体所成为其中的“国家级半导体照明国
[电源管理]
智能<font color='red'>LED照明</font>系统设计流程探讨
LED散热基板介绍及技术发展趋势探析
随着全球环保的意识抬头,节能省电已成为当今的趋势。LED产业是近年来最受瞩目的产业之一。发展至今,LED产品已具有节能、省电、高效率、反应时间快、寿命周期长、且不含汞,具有环保效益;等优点。然而通常LED高功率产品输入功率约为20%能转换成光,剩下80%的电能均转换为热能。 一般而言,LED发光时所产生的热能若无法导出,将会使LED结面温度过高,进而影响产品生命周期、发光效率、稳定性,而LED结面温度、发光效率及寿命之间的关系,以下将利用关系图作进一步说明。 1、LED散热途径 依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法约略可以下示意之: 散热途径说明:
[电源管理]
中山市力争2012年LED照明等产值超千亿元
      广东省中山市现已确立风电、半导体照明(LED)、新能源汽车、太阳能、核电及生物质能等六大领域优先发展,使该市新能源产业产值到2012年力争超过千亿元。       中山市政府相关负责人介绍,"中国灯饰之都"古镇在其LED的年产值已超35亿元人民币的基础上,拟在2012年将其LED及太阳能光伏照明产业发展到200亿元,其中包括培育1至2家年产值超55亿元、3至5家产值超1亿元的新能源企业。大洋电机则正在与北京理工大学合作积极筹备新能源汽车整车研发制造项目,这个项目或成为中山市的新能源汽车产业的领军者。       按照规划,中山市新能源产业将呈现"一带多圈(区)"的空间格局。"一带"是指新光源产业带,主要包括小榄、古镇、
[电源管理]
图文解析能源之星LED照明测量标准及检测细节
  为加速LED照明商品化,北美能源之星针对LED照明产品特性,订定迥异于传统照明的测试规范,包含环境温度测试、积分球量测、配光曲线等,透过LED照明产品测试方式定义的一致性,区分出LED照明装置的优良,有利于质量升级。   美国能源之星(Energy Star)已陆续发布针对固态照明产品的检测规范定义,文件当中包含检测项目、检测方法依据的规范、须检测的样品数量及合格判定的规格数值,另外对于可进行测试的授权实验室也有明确说明。在能源之星对固态照明产品测试所引用的规范当中,异于传统照明的部分,包含ANSI C78.377-2008、北美照明协会(IESNA)LM-79-08、IESNA LM-80-08三份规范(图1),本篇文
[电源管理]
图文解析能源之星<font color='red'>LED照明</font>测量标准及检测细节
LED封装技术的九个趋势
1)、采用大面积芯片封装 用1×1mm2 的大尺寸芯片取代现有的0.3×0.3mm2 的小芯片封装,在芯片注入电流密度不能大幅度提高的情况下,是一种主要的技术发展趋势。 2)、芯片倒装技术 解决电极挡光和蓝宝石不良散热问题,从蓝宝石衬底面出光。在p电极上做上厚层的银反射器,然后通过电极凸点与基座上的凸点键合。基座用散热良好的Si材料制得,并在上面做好防静电电路。根据美国Lumileds公司的结果,芯片倒装约增加出光效率1.6倍。芯片散热能力也得到大幅改善,采用倒装技术后的大功率发光二极管的热阻可低到12~15℃/W。 3)、金属键合技术 这是一种廉价而有效的制作功率LED的方式。主要是采用金属与金属或
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved