一般来说,LED灯泡中的二极管在发光时所产生的废热,会通过Slug、Board…等多个零组件的引导之后,再排放到周围的大气环境中,热量传送在二极管与Slug、Slug与Board之间,主要靠的是热传导型式,至于由Board传送到大气环境中,则是有热传导、热对流及热幅射3种。LED照明业者在规划产品的散热设计时,可先对此传导过程进行散热分析,借以计算出每一段环节中的热阻值大小,然后再针对表现较差的部分加以改善。这样解决散热问题的做法会比较能看出成效。
分析热传导形式 解决LED散热问题
以热传导效率的改善为例,我们可以透过设法增加Slug/Board的几何尺寸面积,亦或是直接选用高导热材料来制作散热元件的方式来进行,以降低该部分的热阻值。而对于二极管与Slug、Slug与Board之间因面积大小差异、温度分布不均而所衍生出的扩散热阻问题,简国祥则建议可由减少面积比、增加元件底板厚度、提高材料本身的热传导系数,以及强化热对流效果…等层面来下手。增加底板厚度是较为常见的做法。当其厚度增加时,因面积比所造成的差异效应便可缩小,热往垂直方向与向两旁水平扩散的速度会更趋于一致,从而使得其扩散热阻问题的影响变小。
如果受限于空间的考量,底板厚度无法再增加时,业者或许也可透过增加热导管…等方式,强化底板横向的热传导系数,以缩短垂直与水平方向热传导的差异。这表示底板厚度薄时,增加其横向热传导系数的效益也就越高。虽然厚度增加会减少扩散热阻,但相对也会使一维热阻值增加。业者必须要透过实验与计算的方式,设法在此两者之间取得平衡,以找出底部最佳的厚度。但一般来说,当二极管与Slug、Slug与Board之间的面积差异越大时,最佳厚度也会有跟著增加的趋势。
至于在热对流方面,除了因所处环境的需求,必须利用风扇…等方式进行强制对流之外,一般业者为避免增加其产品散热元件体积及制造成本,通常都会采用自然对流的方式设计。当Board几何面积越大,或热对流系数越高时,其热对流的热阻值就越小。但不幸的是,通常Board几何面积越大时,热对流系数则相对越差。因此人们在规划LED灯泡布局时,一般会取其Board的几何面积与热对流系数相乘之后的最大值来进行设计。另外对于散热鳍片的设计,由于其热量会由底部传至尾端的方式进行散热,因此其热传导系数、热对流系数与厚度值,都会影响散热鳍片的最适尺寸。在一般的情况下,当散热鳍片厚度、热传导系数越高时,鳍片散热效率就越好;而相对而言,当热对流系数越高时,鳍片散热效率会越差。这也就是说,如果热对流效果很好时,散热鳍片所需要的尺寸便越小。因此一般采自然对流的散热鳍片通常会比较高大,而鳍片与鳍片之间所应保持的距离也会越宽。
LED灯泡散热处理 需切合实际应用需求
除了上述的热传导及热对流外,热幅射也是LED灯泡散热的一项重要机制。热幅射的效果好坏与材料的表面状况有关。以散热鳍片为例子,在大小及间隔固定的条件下,其铝材质表面是否有抛光,还是已经被氧化,对于其热幅射效果就有很大的差异。另一方面,也由于热幅射表面必须要有温差,并且能直接看到彼此,才能进行热传,因此对于某些款式的灯具,热幅射的散热效果,有时甚至比其它两种更好。
不同的灯具设计及照明需求,所应采用的散热技术也会有所差异。象是发光效率、半导体材质、光源分布状况、热量传输的距离、外部所能接触到的气流环境…等变量,对于灯具散热元件的设计即有很大的影响。举例来说,若LED灯泡的发光效率能够提升至90%,让电流转换成的热量减少,或是所采用的半导体元件材料在较高温度下仍可正常运行,自然便能缩小散热元件所需占用的面积。“而有的灯具(如嵌灯)会处于相对密闭的空间,有些(如投射灯)则可直接曝露在大气或冷房环境之下。”因此具体的LED灯泡散热处理设计方式,应该要视其需求与所处状况而定。
上一篇:太阳能、市电互补LED路灯控制器研究
下一篇:LNK405EG: 15W PAR38 TRIAC调光LED驱动方案
推荐阅读最新更新时间:2023-10-18 15:53
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况