深度解读:高功率LED封装基板技术

最新更新时间:2011-11-02来源: 中国LED网关键字:高功率  LED  封装基板 手机看文章 扫描二维码
随时随地手机看文章

  前言

  长久以来显示应用一直是led发光组件主要诉求,并不要求LED高散热性,因此LED大多直接封装于传统树脂系基板,然而2000年以后随着LED高辉度化与高效率化发展,尤其是蓝光LED组件的发光效率获得大幅改善,液晶、家电、汽车等业者也开始积极检讨LED的适用性。

  在此同时数字家电与平面显示器急速普及化,加上LED单体成本持续下降,使得LED的应用范围,以及有意愿采用LED的产业范围不断扩大,其中又以液晶面板厂商面临欧盟颁布的危害性物质限制指导(RoHS: Restriction of Hazardous Substances Directive)规范,因此陆续提出未来必需将水银系冷阴极灯管(CCFL:Cold Cathode Fluor-escent Lamp)全面无水银化的发展方针,其结果造成高功率LED的需求更加急迫。

  技术上高功率LED封装后的商品,使用时散热对策成为非常棘手问题,在此背景下具备高成本效益,类似金属系基板等高散热封装基板的发展动向,成为LED高效率化之后另一个备受嘱目的焦点。

  接着本文要介绍LED封装用金属系基板的发展动向,与陶瓷系封装基板的散热设计技术。

  发展历程

  图1是有关LED的应用领域发展变迁预测,如图2所示使用高功率LED时,LED产生的热量透过封装基板与冷却风扇排放至空气中。

 

LED应用领域发展变化 

 高散热基板的必要性

    以往LED的输出功率较小,可以使用传统FR4等玻璃环氧树脂封装基板,然而照明用高功率LED的发光效率只有20~30% ,而且芯片面积非常小,虽然整体消费电力非常低,不过单位面积的发热量却很大。

        如上所述汽车、照明与一般民生业者已经开始积极检讨LED的适用性(图3),一般民生业者对高功率LED期待的特性分别是省电、高辉度、长使用寿命、高色再现性,这意味着高散热性是高功率LED封装基板不可欠缺的条件。

 

         一般树脂基板的散热极限只支持0.5W以下的LED,超过0.5W以上的LED封装大多改用金属系与陶瓷系高散热基板,主要原因是基板的散热性对LED的寿命与性能有直接影响,因此封装基板成为设计高辉度LED商品应用时非常重要的组件。

        金属系高散热基板又分成硬质(rigid)与可挠曲(flexible)系基板两种(图4) ,硬质系基板属于传统金属基板,金属基材的厚度通常大于1mm,硬质系基板广泛应用在LED灯具模块与照明模块,技术上它是与铝质基板同等级高热传导化的延伸,未来可望应用在高功率LED的封装。

         可挠曲系基板的出现是为了满足汽车导航仪等中型LCD光模块薄形化,以及高功率LED三次元封装要求的前提下,透过铝质基板薄板化赋予封装基板可挠曲特性,进而形成同时兼具高热传导性与可挠曲特性的高功率LED封装基板。

硬质系基板的特性

      图5是硬质金属系封装基板的基本结构,它是利用传统树脂基板或是陶瓷基板,赋予高热传导性、加工性、电磁波遮蔽性、耐热冲击性等金属特性,构成新世代高功率LED封装基板。
 

 

        如图所示它是利用环氧树脂系接着剂将铜箔黏贴在金属基材的表面,透过金属基材与绝缘层材质的组合变化,可以制成各种用途的LED封装基板。

        高散热性是高功率LED封装用基板不可或缺的基本特性,因此上述金属系LED封装基板使用为铝与铜等材料,绝缘层大多使用充填高热传导性无机填充物(Filler)的填充物环氧树脂。

        铝质基板是应用铝的高热传导性与轻量化特性制成高密度封装基板,目前已经应用在冷气空调的转换器(Inverter)、通讯设备的电源基板等领域,铝质基板同样适用于高功率LED的封装。

      图6是各种金属系封装基板的特性比较,一般而言金属封装基板的等价热传导率标准大约是2W/m‧K,为满足客户4~6W/m‧K高功率化的需要,业者已经推出等价热传导率超过8W/m‧K的金属系封装基板。
 

 

        由于硬质金属系封装基板主要目的是支持高功率LED的封装,因此各封装基板厂商正积极开发可以提高热传导率的技术。

        硬质金属系封装基板的主要特征是高散热性。图7与图8是仿真分析LED芯片发热量为1W时,2W/m ‧K一般封装基板与8W/m‧K超高热传导封装基板正常使用状态下的温度分布特性。

        由图8可知使用高热传导性绝缘层封装基板,可以大幅降低LED芯片的温度。此外基板的散热设计,透过散热膜片与封装基板的组合,还可望延长LED芯片的使用寿命。

        金属系封装基板的缺点是基材的金属热膨胀系数非常大,类似低热膨胀系数陶瓷系芯片组件焊接时,容易受到热循环冲击,如果高功率LED的封装使用氮化铝时,金属系封装基板可能会发生不协调问题,因此必需设法吸收LED模块的各材料热膨胀系数差异造成的热应力,藉此缓和热应力提高封装基板的可靠性。

可挠曲系基板的特性

        可挠曲基板的主要用途大多集中在布线用基板,以往高功率晶体管与IC等高发热组件几乎不使用可挠曲基板,最近几年液晶显示器为满足高辉度化需求,强烈要求可挠曲基板可以高密度设置高功率LED,然而LED的发热造成LED使用寿命降低,却成为非常棘手的技术课题,虽然利用铝板质补强板可以提高散热性,不过却有成本与组装性的限制,无法根本解决问题。

      图9是高热传导挠曲基板的断面结构,它是在绝缘层黏贴金属箔,虽然基本结构则与传统挠曲基板完全相同,不过绝缘层采用软质环氧树脂充填高热传导性无机填充物的材料,具有与硬质金属系封装基板同等级8W/m‧K的热传导性,同时还兼具柔软可挠曲、高热传导特性与高可靠性(表1),此外可挠曲基板还可以依照客户需求,将单面单层面板设计成单面双层、双面双层结构。
 

 

        高热传导挠曲基板的主要特征是可以设置高发热组件,并作三次元组装,亦即它可以发挥自由弯曲特性,进而获得高组装空间利用率。

      图10是高热传导挠曲基板与传统聚亚酰胺(Polyi-mide)挠曲基板,设置1W高功率LED时的散热实验结果,聚亚酰胺基板的厚度为25μm,基板的散热采用自然对流方式。
 

 

        根据实验结果显示使用高热传导挠曲基板时,LED的温度大约降低100℃,这意味着温度造成LED使用寿命降低的问题可望获得改善。

        事实上除了高功率LED之外,高热传导挠曲基板还可以设置其它高功率半导体组件,适用于局促空间或是高密度封装等要求高散热等领域。

        有关类似照明用LED模块的散热特性,单靠封装基板往往无法满足实际需求,因此基板周边材料的配合变得非常重要,例如图11的端缘发光型LED背光模块的新结构,配合~3W/m‧K的热传导性膜片,可以有效提高LED模块的散热性与LED模块的组装作业性。

 陶瓷系封装基板

        如上所述白光LED的发热随着投入电力强度的增加持续上升,LED芯片的温升会造成光输出降低,因此LED的封装结构与使用材料的检讨非常重要。

        以往LED使用低热传导率树脂封装,被视为是影响散热特性的原因之一,因此最近几年逐渐改用高热传导陶瓷,或是设有金属板的树脂封装结构。LED芯片高功率化常用手法分别是:

  ●LED芯片大型化

  ●改善LED芯片的发光效率

  ●采用高取光效率的封装

  ●大电流化
 
        虽然提高电流发光量会呈比例增加,不过LED芯片的发热量也会随着上升。图12是LED投入电流与放射照度量测结果,由图可知在高输入领域放射照度呈现饱和与衰减现象,这种现象主要是LED芯片发热所造成,因此LED芯片高功率化时首先必需解决散热问题。
 
  LED的封装除了保护内部LED芯片之外,还兼具LED芯片与外部作电气连接、散热等功能。

         LED的封装要求LED芯片产生的光线可以高效率取至外部,因此封装必需具备高强度、高绝缘性、高热传导性与高反射性,令人感到意外的是陶瓷几乎网罗上述所有特性。

  表2是陶瓷的主要材料物性一览,除此之外陶瓷耐热性与耐光线劣化性也比树脂优秀。
 

 

        传统高散热封装是将LED芯片设置在金属基板上周围再包覆树脂,然而这种封装方式的金属热膨胀系数与LED芯片差异非常大,当温度变化非常大或是封装作业不当时极易产生热歪斜(thermal strain;热剪应力),进而引发芯片瑕疵或是发光效率降低。

        未来LED芯片面临大型化发展时,热歪斜问题势必变成无法忽视的困扰,有关这点具备接近LED芯片的热膨胀系数的陶瓷,可说是热歪斜对策非常有利的材料。

      图13是高功率LED陶瓷封装的外观;图14是高功率LED陶瓷封装的基本结构,图14(b)的反射罩电镀银膜。它可以提高光照射率,图14(c)的陶瓷反射罩则与陶瓷基板呈一体结构。
 

 

 

 散热设计

  图15表示LED内部理想性热流扩散模式,图15右图的实线表示封装内部P~Q之间高热流扩散分布非常平坦,由于热流扩散至封装整体均匀流至封装基板,其结果使得LED芯片正下方的温度大幅降低。

 

      图16是以封装材的热传导率表示热扩散性的差异,亦即图15表示正常状态时的温度分布,与单位面积单位时间流动的热流束分布特性。

        使用高热传导材时,封装内部的温差会变小,此时热流不会呈局部性集中,LED芯片整体产生的热流呈放射状流至封装内部各角落,换言之高热传导材料可以提高LED封装内部的热扩散性。

        LED封装用陶瓷材料分成氧化铝与氮化铝,氧化铝的热传导率是环氧树脂的55倍,氮化铝则是环氧树脂的55倍400倍,因此目前高功率LED封装用基板大多使用热传导率为200W/mK的铝质,或是热传导率为400W/mK的铜质金属封装基板。

        半导体IC芯片的接合剂分别使用环氧系接合剂、玻璃、焊锡、金共晶合金等材料。LED芯片用接合剂除了上述高热传导性之外,基于接合时降低热应力等观点,还要求低温接合与低杨氏系数等等,符合这些条件的接合剂分别是环氧系接合剂充填银的环氧树脂,与金共晶合金系的Au-20%Sn。

        接合剂的包覆面积与LED芯片的面积几乎相同,因此无法期待水平方向的热扩散,只能寄望于垂直方向的高热传导性。

  图17是热传导差异对封装内部的温度分布,与热流束特性的模拟分析结果,封装基板使用氮化铝。根据仿真分析结果显示LED接合部的温差,热传导性非常优秀的Au-Sn比低散热性银充填环氧树脂接合剂更优秀。

有关LED封装基板的散热设计,大致分成:

  ●LED芯片至框体的热传导

  ●框体至外部的热传达

        两大部位。热传导的改善几乎完全仰赖材料的进化,一般认为随着LED芯片大型化、大电流化、高功率化的发展,未来会加速金属与陶瓷封装取代传统树脂封装方式 。此外LED芯片接合部是妨害散热的原因之一,因此薄接合技术成为今后改善的课题。

        提高LED高热排放至外部的热传达特性,以往大多使用冷却风扇与热交换器,由于噪音与设置空间等诸多限制,实际上包含消费者、下游系统应用厂商在内,都不希望使用强制性散热组件,这意味着非强制散热设计必需大幅增加框体与外部接触的面积,同时提高封装基板与框体的散热性。

        具体对策例如高热传导铜层表面涂布“利用远红外线促进热放射的挠曲散热薄膜”等等,根据实验结果证实使用该挠曲散热薄膜的发热体散热效果,几乎与面积接近散热薄膜的冷却风扇相同,如果将挠曲散热薄膜黏贴在封装基板、框体,或是将涂抹层直接涂布在封装基板、框体,理论上还可以提高散热性。

        有关高功率LED的封装结构,要求能够支持LED芯片磊晶接合的微细布线技术;有关材质的发展,虽然氮化铝已经高热传导化,不过高热传导与反射率的互动关系却成为另一个棘手问题,一般认为未来若能提高热传导率低于氮化铝的氧化铝的反射率,对高功率LED的封装材料具有正面帮助。

  结语

        以上介绍LED封装用金属系基板的发展动向,与陶瓷系封装基板的散热设计技术。随着LED大型化、大电流化、高功率化的发展,事实上单靠封装基板单体并无法达成预期的散热效,必需配合封装基板周边的散热材料,以及LED封装结构才能进行有效的散热。因此未来必需持续开发周边相关技术,LED才能够实现次世代光源的终极目标。

关键字:高功率  LED  封装基板 编辑:探路者 引用地址:深度解读:高功率LED封装基板技术

上一篇: LED背光源特点介绍
下一篇:分析:高辉度4元系LED芯片技术与制作方法

推荐阅读最新更新时间:2023-10-18 16:00

准分子激光剥离系统在高亮LED生产中的应用
  在过去的十年中,GaN基底的高 亮度 白光LED 以其良好的性价比越来越引起人们的关注。各个厂商竞相研发新的 LED 结构形式来提高其发 光效 率,以此增加 LED芯片 的发光度,从而降低LED芯片的单位发光成本。这些技术的发展以及高亮LED芯片自身的特点,极大地增加了全 固态照明 的应用范围,其在 自动化 照明、背 光显示 技术以及传统照明方面 显示 了蓬勃发展的局面。荷兰的A44高速公路已经成为世界上第一条采用 LED照明 的高速公路(见图1)。 图1 荷兰A44高速公路,是第一条采用LED照明的高速公路    基底剥离的垂直结构实现更高亮度输出   传统方式采用两种方法设计LED芯片,即平面
[电源管理]
准分子激光剥离系统在高亮<font color='red'>LED</font>生产中的应用
74LS164扩展的8位LED串行显示接口电路
74LS164扩展的8位LED串行显示接口电路(一) 本实验显示的结果是12345678。利用89C52和74LS164扩展8位LED数码管显示,74LS164是将串行输入转换成并行输出,用来选择数码管的段显示,89C51的P2口是用对数码管的位选,从而驱动数码管按照程序的指令进行显示。 流程图设计 74LS164扩展的8位LED串行显示接口电路(二) 74LS164是串行输入并行输出的移位寄存器,每接一片74LS164可扩展一个8位并行输出口,可以作为LED显示器的8根段选线。实物如图3-1所示。系统总电路原理图如图3-2,为89C52单片机最小系统与8位数码管的连接图,分别用8个74LS164和8个LED数码管。部分
[单片机]
74LS164扩展的8位<font color='red'>LED</font>串行显示接口电路
LED照明产品在生产在线测试的可行性与必要性
LED 因其省电、环保的特性,普遍被认为是下世代的主流照明技术,各厂商各国政府无不看好此项技术,纷纷投入大量资源投资,然而时至今日, LED照明 相对偏高的价格,让市场的开展始终不如预期。除了价格因素之外,LED照明的规格标示不一、参差不齐的质量、无法预期的可靠度等等,也都是LED照明市场推广的阻碍。有鉴于此,各LED照明标准纷纷出台,对量测手法也多所著墨,如IESLM-79便规范了积分球与分布亮度计等量测方式。然而标准规范的方式往往只考虑了准确性,对使用上的方便性、测试所需花费的时间等等其他因素往往忽略,使得标准所规范的量测方式只能在实验室应用,如积分球与分布亮度计的上下料件便利性,测试所需花费的空间与时间等,均使其在生产在线
[电源管理]
<font color='red'>LED</font>照明产品在生产在线测试的可行性与必要性
Micro LED Display有三大挑战 产业界高度投入
据电子报道:Micro LED Display越来越热,近百位产业界人士集结,认为Micro LED Display目前的研发有三大挑战,分别是巨量转移技、电流控制以及与现有LCD和产业链的兼容性问题。   友达董事长暨执行长彭双浪指出,Micro LED具备低耗能、高亮度、反应速度快与轻薄等优势,最大的好处是台湾可结合LCD与LED两大成熟产业,这是台湾有优势的地方,两大产业可携手做出更好的下一世代显示器产品。   不过,彭双浪也强调,Micro LED在整个供应链从材料、设备到制程都还有问题,尤其是巨量移转、精密机械如何搭配,以及检测、维修、模组设计等都不同,目前还有许多难关要突破。   虽然不同厂商陆续有样品出现,但Micr
[手机便携]
汽车前灯需要降压-升压型 LED 驱动器
背景 如今汽车的定义在不断演变,变化之多远胜以往。在过去100年里,采用内燃动力传动系统的汽车一直占据主导地位,主要由汽油提供动力,还有少量的柴油动力传动系统。可是现在,从纯电动型(EV)到高效率内燃传动系统,再到大量组合式传动系统 (常称为混合动力传动系统),我们有了多种汽车动力传动系统。所有这些设计都有一个共同的目标,即提高燃油效率,同时减少碳排放量。新型动力总成设计包括直接燃料喷射、涡轮增压、引擎停止/启动系统、再生制动、乙醇含量较高的燃料以及较清洁的柴油燃烧。随着混合动力型汽车的开发,汽车变得更加依赖较清洁的电力来源了。尽管取得了如此大的进步,但是汽车设计有一方面仍相对地稳定,那就是为了在夜间或天气条件不够完美的情况
[电源管理]
汽车前灯需要降压-升压型 <font color='red'>LED</font> 驱动器
韩国积极推动大规模的LED照明出口计划
      据相关机构及业者表示,韩国光州市、韩国光产业振兴会(KAPID)及当地业者,目前正在进行对马来西亚、俄罗斯、越南等地,进行数百亿至数千亿规模的LED照明出口计划,该计划是由1个企业自治团体和企业振兴机构为主导,以多个企业共同进行组织性的推动,因此成功的可能性极高,将对未来韩国LED产业进军海外带来正面影响。    目前韩国企业正在马来西亚进行约5,000亿韩元(约4.42亿美元)规模的马六甲州低碳绿色成长都市打造计划。光州市长姜云太为推动此计划,曾拜访马来西亚,并与马六甲州签订都市友好交流协定。韩国光产业振兴会也与全球营销大型企业PhotonicsTradeGroup(PTG)、马六甲州政府投资振兴厅,签订马六甲州LE
[电源管理]
俄罗斯正式加入WTO 或成中国LED企业“新大陆”
  如今,俄罗斯正式加入WTO,“灰色清关”透明化将是大势所趋。迫于国际压力,俄罗斯在关税、市场规范等方面都将作出相应的调整。俄罗斯入世对中国企业的明显好处在于使中国优势商品的出口成本降低,进入俄市场渠道也更为畅通。这无疑会扩大中国商品出口,提高中国企业的利润空间。   俄罗斯入世带来新贸易商机将远远超出数字上的体现,在 LED 产业领域,中低端LED灯的出口企业可以去俄罗斯看看。以俄罗斯 LED照明 市场当前的发展速度,俄罗斯LED 照明 市场很有可能成为中国中小型LED企业的“新大陆”。   目前,国内LED企业,被大陆市场紧闭的“内忧”与欧债危机的“外患”压得难以喘气,众多大型LED企业开始将目光转移到两
[电源管理]
满足更高算力需求,英特尔率先推出用于下一代先进封装的玻璃基板
玻璃基板有助于克服有机材料的局限性,使未来数据中心和人工智能产品所需的设计规则得到数量级的改进。 英特尔宣布在业内率先推出用于下一代先进封装的玻璃基板,计划在2020年代后半段面向市场提供。这一突破性进展将使单个封装内的晶体管数量不断增加,继续推动摩尔定律,满足以数据为中心的应用的算力需求。 英特尔公司高级副总裁兼组装与测试技术开发总经理Babak Sabi 表示;“经过十年的研究,英特尔已经领先业界实现了用于先进封装的玻璃基板。我们期待着提供先进技术,使我们的主要合作伙伴和代工客户在未来数十年内受益。“ 组装好的英特尔玻璃基板测试芯片的球栅阵列(ball grid array)侧 与目前采用的有机基板相比,玻
[嵌入式]
满足更高算力需求,英特尔率先推出用于下一代先进<font color='red'>封装</font>的玻璃<font color='red'>基板</font>
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved