一个简单的LED开路故障保护电路设计

最新更新时间:2012-01-10来源: 21IC关键字:LED  故障  保护电路设计 手机看文章 扫描二维码
随时随地手机看文章

    要保证LED串的亮度恒定,其驱动电流必须是可调节的。人们通常使用升压转换器来提升电压电平,以使LED在足够高的偏置时导通。调节LED串电流的典型方法是增加一个与LED相串联的感应电阻并把其两端的电压作为PWM控制器的反馈输入。如果LED串中某个LED或某段导线发生故障,则电路会呈开路负载的状况。

    这时,电流感应电阻两端的电压下降到零。当通过增加PWM导通时间来提升输出电压失败的时候,控制电路响应将尝试增加LED电流。在大多数情况下,输出电压将急剧飙升,直到输出电容、二极管和/或功率FET过载与损毁。使用图1所示的简单的过压保护电路可以避免出现这种情况。
 

图1:一个简单的LED驱动器过压保护电路。

    这个升压电路通过电阻R14测量LED电流并实现电流模式控制。该电路把输出电压提升到30V以上,以0.35A的调节电流驱动10个LED。设计者常常加入串联电阻R9并利用它来测量和验证反馈回路的稳定性。在实际应用中,这个电阻可能会被零欧姆电阻替代。图中给出的开路保护电路利用了R9,它与齐纳二极管D2一起提供了额外的功能。

    在正常工作情况,LED电流由0.26V 的PWM控制器内部参考电压除以R14电阻值所决定。因为R14两端的电压降在正常工作条件下将一直保持在0.26V,在R5和R9串联电阻的两端没有电压降。R5与R9之和的作用是设定回路增益而不影响输出电流调整点。D2这时没有导通,因为它被有意设置为比正常输出电压高20%。

    当LED发生开路故障时,D2、R9和R14成为输出两端的负载。控制器迫使输出电压升高,直到输出电压达到约36V。D2开始导通,使电流通过R9和R14流向接地,同时把TP1上的感应电压提升到0.26V。这向控制器提供了一个必不可少的反馈电压。输出调整到36V左右,源电流等于0.26V除以51欧姆(约等于5mA)。这使D2上的功率降至最低。如果D2直接接到LED串的两端,在开路期间的总输出电流将流过D2,如果D2无力承受这样大的功率则会立即烧毁。
 

图2:开路LED测试结果。

    图2显示了断路测试时的LED电流和升压转换器的输出电压。LED电流立即从0.35A下降到0A,继而输出电压升高。齐纳二极管一旦达到36V的钳位电压,齐纳电流随即产生,调节过程也重新确立,输出电压将保持在36V。由于控制回路的响应速度问题,在转换期间输出电压会出现小幅超调。

关键字:LED  故障  保护电路设计 编辑:探路者 引用地址:一个简单的LED开路故障保护电路设计

上一篇:白颜色LED原理简介
下一篇:基于LED显示屏软件设计

推荐阅读最新更新时间:2023-10-18 16:20

LED路灯在寒地应用环境下关键技术问题分析
  随着LED照明技术的快速发展,在国内的许多城市,道路照明已经不乏LED路灯的身影。尤其是大功率LED器件的光效超过100lm/W以后,LED路灯作为道路照明的发展趋势已经得到普遍认同。2009年,国内几个城市分别组织了LED道路照明产品的评估测试工作,大多数LED路灯产品在配光曲线、系统光效等关键技术指标方面进步显著,在道路照明标准的符合性、节能效果等方面已经达到相关标准和规范的要求。   尽管LED路灯技术水平的发展较快,但是大多数LED路灯厂商在产品研发过程中忽略了在寒地应用环境下的特殊技术要求。一个普遍的错误认识是:LED在寒冷地区应用有利于散热,不容易发生故障。殊不知,寒冷应用环境下,对LED路灯有着更为严格的技
[电源管理]
从DLP到LED 分析室内大屏幕显示技术
LED显示屏在户外大屏幕显示技术领域几乎是唯一的选择,霸主地位至今无人能够撼动。比较而言,室内大屏幕显示技术可谓是层出不穷:从最初的CRT电视墙到DLP背投拼接的全面替代;期间也曾经出现过LCOS显示技术的昙花一现;近年,再有平板显示液晶拼接迅速崛起以及等离子拼接的反扑;而今,LED显示屏也不甘心居于室内广告和信息发布市场之一隅,利用小间距技术对室内显示市场发起了全面的进攻。 2012年室内大屏幕显示市场各种显示技术产品的销量对比 纵观当今的室内显示技术,各具所长又各有局限,无法简单的定义哪种技术具有绝对优势。市场销量的占比每年也都会不同。根据大屏幕显示业绩榜的调研结果,各种显示技术的产品按照市场销
[安防电子]
从DLP到<font color='red'>LED</font> 分析室内大屏幕显示技术
通嘉发表4 channel恒流LED背光驱动IC- LD7889
      通嘉推出可驱动4 channel LED line bar, 其效率高达93%, 恒电流LED背光驱动IC- LD7889. 4.5V 至 36V 的宽输入电压范围, 能配合各种电源驱动12- 90颗LED 产生均匀亮度, IC内部每一channel 的电流驱动能力最大可达330mA, 可以应用未来高电流的LED light bar.       LD7889 聚焦在较大尺寸的LED monitor 与 较小尺寸的LED TV, 可提供LED 短路与断路的保护机制, 以及LED误动作讯号侦测的输出保护讯号, 使系统能判断LED light bar 的使用状况.       LD7889内建创新专利技术的机制,
[电源管理]
LED照明:节电超过六成
  昨天上午,一场科技成果对接会,吸引了全省乃至全国的关注,本来只准备了300多人的会场,没想到一下子来了500多人,而且来的人构成广泛,有企业主、政府科技部门人士,以及一些风险投资基金的经理。   这个成果对接会,由中科院院地合作局、江苏省科技厅、中科院南京分院、扬州市政府主办。值得一提的是,这次会议,中科院系统半导体照明领域的专家全部到场,并且带来压箱底的最新科研成果。    LED节电六成,寿命更长   半导体照明技术为什么会这样火?这样一个高规格的产业对接活动,为什么要放在扬州召开,并且吸引了南京、苏州及苏北等市众多企业的纷至沓来?   这种照明设备就是LED(发光二极管)——一个扬州正在致力打造的产业,一
[电源管理]
高亮度LED的高精度高性价比测试
可见光发光二极管(LED)兼具高效率和长寿命的特点。目前,它们的应用十分广泛。制造商们通过对LED器件的深入研究已经研制出了具有更高光通量、更长寿命、更多色彩和更高每瓦流明数的新器件。精确而高性价比的测试对于确保器件的可靠性和质量至关重要。 LED测试在生产的不同阶段具有不同类型的测试序列,例如设计研发阶段的测试、生产过程中的晶圆级测试、以及封装后的最终测试。尽管LED的测试一般包含电气和光学测量,本文着重探讨电气特征分析,只在适当的位置介绍部分光学测量技术。图1给出了典型二极管的电气I-V曲线。完整的测试应该包含大量 的电压值与对应的电流工作点,但是一般情况下有限的采样点就足以测试出器件的品质因数。 图1. 典型LED的直
[测试测量]
高亮度<font color='red'>LED</font>的高精度高性价比测试
一款智能LED照明电源驱动方案
  一款优秀的LED智能照明驱动方案,必须具备优异的 电源 驱动。基于目前LED市场火爆,前景广阔利益丰厚,友尚推出基于TI TPS92314产品的LED照明驱动方案,以其高集成度,高效率,高可靠性优势,获得越来越多的设计者的青睐。    方案特性:   1、调节无二次侧感应的 LED 电流 ;   2、临界导电模式 (CCM)(具有针对谷底开关的零电流检测) ;   3、具有内在 PFC 的自适应准时控制 ;   4、可编程开关接通延迟 ;   5、过热保护。   TI TPS92314简介:   TPS92314是一款具有 PFC脱机初级侧感应转换器,更确切地讲,它是隔离型初级侧受控临界导电模式 PFC 反激。该控制器在具有
[电源管理]
一款智能<font color='red'>LED</font>照明电源驱动方案
滞环恒流LED驱动电路的电流采样电路
针滞环恒流大功率LED驱动 芯片 ,提出一款高性能 电流 采样 电路 。该电路采用高压工艺,可承受最对高达40V的输入 电压 。通过分析滞环控制的特点,采用 串联 电阻 采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800kHz的频率下正常工作,采样精度达99.78%;当电压从15V变化至35V时平均负载电流误差为0.81%;输出电压范围为0~5V。 当今照明领域,LED凭借其寿命长、功耗低、无污染等优点成为未来发展趋势。然而,要针对不同的应用场合,分别设计一个独特的芯片,目前情况是不可行的。因此,
[电源管理]
滞环恒流<font color='red'>LED</font>驱动电路的电流采样电路
LED行业七大常用测试方法详解
1、高温高压及其冲击测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验 测试方法: 1,将5款LED灯具放置在一个室温为60℃的房间; 2,通过调压器将LED灯具的输入电压调为最大额定输入电压的1.1倍; 3,接通电源,点灯24H,并观察灯具是否有损坏、材料受热变形等异常现象; 4,点灯测试后,通过继电器控制灯具在此环境下进行冲击测试,测试设置为:点灯20s、熄灯20s,循环100次。 测试要求: A,灯具在经过高温高压测试后,不能发生表面脱漆、变色、开裂、材料变形等异常现象; B,灯具在经过冲击测试后,不能发生漏电、点灯不亮等电气异常现
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved