LED模组在线检测设计

最新更新时间:2012-02-11来源: 现代电子技术关键字:LED  模组在  检测设计 手机看文章 扫描二维码
随时随地手机看文章
    LED显示屏产业现已成为新兴的高科技产业,在各终端设备中已经被广泛使用,如广告牌,文字显示器,大屏幕视频显示器等。显示屏显示效果的好坏直接取决于发光模组质量的高低,LED拼接显示屏技术作为实现大屏幕的一种方法已经得到了极大的推广应用,LED模组作为组成LED显示屏的主要部件,在制造、使用和性能评定时均需要对其进行快速准确的测量和分析。国内对LED单元板的检测在很大程度上依靠人工完成,使得检测速度和质量受个人主观因素影响较大,结果凸显出来的问题就是发光模组的发光亮度、色度不一致性过大,使得拼接出的显示屏不可避免的出现“马赛克”现象,极大的影响显示屏的显示效果,直接降低显示屏的产品质量和档次。文中针对该问题并根据厂家实际的需要,利用机器视觉技术,将其融入到对LED单元板的检测过程中,实现了一种快速高效价格低廉的LED单元板检测系统。

    用于模组的检测设备总体由显示屏驱动控制单元、工作台、CCD图像传感器、图像采集卡、PC机等组成,如图1所示。选用64颗LED组成的8x8点阵LED模组作为检测模板,如图2所示。

a.jpg



    1 检测系统算法流程

    在机器视觉系统中,视觉信息的处理主要依赖于图像处理,其包括图像增强、数据编码传输、平滑处理、边缘锐化、图像分割、特征抽取、图像识别和理解等。根据具体应用要求在这些过程中进行折中选择。处理后,输出图像的质量会得到相当程度的改善,便于计算机对图像进行分析、处理和识别。根据需求设计的主要算法流程如图3所示。

b.jpg



    2 图像去噪

    在图像的获取、采集和传输过程中,由CCD输入转换器件及周围环境等因素,检测系统中采集的数字图像不可避免的含有各种各样的噪声和失真。大量的实验研究发现,由摄像机拍摄得到的图像受离散的脉冲、椒盐噪声的影响比较严重。中值滤波是应用极为广泛的一种非线性滤波方法,它能有效去除脉冲噪声、椒盐噪声同时又能保留图像边缘细节,由于其不依赖于领域内那些与典型值差别很大的值,故可以克服线性滤波器滤波带来的图像细节模糊,它是一种不同于卷积的邻域计算,其处理原理是(按3x3模板),将滤波模板内的9个像素的灰度值由小到大排列(或是由大到小排列)之后,按其排列顺序选取第5个位置上的像素的灰度值(中值)作为滤波后该像素点上的灰度值。分析可知,中值滤波滤除噪声的性能与滤波窗口的大小直接相关,小的滤波窗口可以较好的保持图片细节,但不能有效的去除脉冲噪声;较大的窗口能更好地抑制噪声,但会使图像变得模湖。文中选用3x3处理窗口,采集图像中最上、最下、最左、最右的所有像素点都无法进行滤波,但在实际检测过程中这些点都位于图像边缘,属于背景色不需检验。

    3 图像分割

    图像分割是由图像处理转到图像分析的关键,其目的就是把图像分割成若干特定的、具有独特性质的区域并提取出感兴趣的目标。为了减少由于二极管发光不均匀性带来的影响,文中采用自适应门限处理技术,将图像分为4个相同大小的区域,并对每个部分的阈值用大津发单独进行计算。大津法基本思想为:记t为区域内部前景与背景的分割阈值,前景点数占图像比例为α0,平均灰度为β0;背景点数占图像比例为α1,平均灰度为β1,图像的总平均灰度为β=α0xβ0+α1xβ1。从最小灰度值到最大灰度值依次遍历t,当t使得类间方差值g=α0x(β0-β)+α1x(β1-β)最大时,t即为分割的最佳阈值。方差作为灰度分布均匀性的一种度量,其值越大,即可说明构成图像的两部分差别越大。当目标错分为背景或背景错分为目标时都会导致两部分差别变小。因此,使类间方差最大化的分割意味着错分概率最小。直接应用大津法计算量很大,在使用时采用了g的等价公式g=α0xα1x(β0-β)。原始图像如图4所示,灰度直方图如图5所示,大津法求出最大阈值如图6所示。

c.jpg

    模组图像用大津法处理后得到的二值化结果如图7、8所示。

d.jpg


    通过图可以发现模组图像直接经过大津法分割后,不同区域之间可能存在着断续的连接,为了断开这些连接部分,用开运算进行处理,运算规则为:使用结构元素B对集合A进行开运算表达式为;l.jpg,用B对A进行开运算就是用B对A进行腐蚀,然后用B对结果进行膨胀。开运算会消除图像边缘毛刺,使得轮廓变得光滑,断开狭窄的间断,结果如图9所示。

e.jpg



    4 图像配准

    4.1 Fourler-Mellin图像配准

    在LED模组的检测过程中,模组摆放位置的变化必将导致待测图像与标准模板图像之间存在着差异,对下一步检测的准确性将产生不可预计的影响。在实际情况中,可能存在着旋转缩放等使问题。文中使用Fourier-Mellin图像配准算法,该算法是一种经典的基于非特征的图像配准算法,考虑被配准的两幅图像s(x,y)和r(x,y),其中s(x,y)是r(x,y)经过平移、旋转和一定尺度缩放变换后的图像,即
f.jpg
    式中|.|表示频谱幅度。可以看出,α(旋转角度)和σ(缩放因子)可以和平移量(x0,y0)分离计算。分析可知频谱幅度仅与α和σ有关,而与平移量(x0,y0)无关,故相似变换参数可分两步来分别计算,第一步通过图像幅度谱求出旋转角度α和缩放因子σ,第二步求出平移参数x0和y0。
4. 2 重新采样插值
    变换后,像素的坐标不会和原来的采样网格完全相同,即输入图像的位置坐标为整数,而输出图像的位置坐标为非整数,这就需要对变换后的图像进行重新采样和插值处理。文中使用双线性插值法对图像进行插值处理。处理公式为:
    g.jpg
    其中,(x,y)为映射位置,0    利用Fomier-Mellin交换,对旋转后的模组图像进行校正,对变换后的图像进行重采样和插值处理,校正后模组图像与原始图像进行重叠配准。结果如图10、11、12所示。

h.jpg

5 失控点检测
    根据项目检测的要求,需要检测出有无下瞎灯、半衰、串线现象,依据第二类最小风险贝叶斯决策规则,贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策,既考虑了各类参考总体出现的概事大小,又考虑了因误判造成的损失大小,判别能力强,规则如下:
    i.jpg
    为将失控点检测并表示出来,将失控点用框子框出来,检测结果如图13、14、15所示。

j.jpg


    检测结果应当保存,以便做相应的统计分析,将检测结果自动保存到数据库中,就可以快速的查找及分析,结果如表1所示。

k.jpg


    实验时,采集130张图片,其中有缺陷的有45张,正确识别127张,精度约为97%。

    6 结论

    依据显示屏模组的检测要求,设计了系统将机器视觉技术融入到对LED模组检测过程中,在不改变LED模组硬件条件下,实现了LED模组的快速品质检测,满足客户的检测要求,在LED单元板快速现场检测领域必将具有较大的应用市场。

关键字:LED  模组在  检测设计 编辑:探路者 引用地址:LED模组在线检测设计

上一篇:建筑物景观照明LED的应用
下一篇:一种新颖的LED动态显示方法

推荐阅读最新更新时间:2023-10-18 16:23

单级LED照明脉冲宽度调节 (PWM) 控制器TPS92210 优势
TPS92210是一款单级LED照明脉冲宽度调节 (PWM) 控制器。TRIAC可调光解决方案不但可调节LED电流,而且还可实现接近 1 的功率因数。参照设计可实现 85% 的效率,支持高密度小型设计方案。该 TPS92210 适用于普通照明应用,如商业与住宅嵌灯、通风照明装置、灯泡替代产品、建筑以及显示照明等。   TPS92210 的主要特性与优势:   1、TPS92210 支持峰值基础电流、恒定导通时间以及频率调制等高灵活工作模式。恒定导通时间模式采用单级功率因数校正,可提高效率;   2、与同类竞争器件相比,TPS92210 的级联 MOSFET 配置可将开关损耗降低 10%,并可实现便捷
[电源管理]
单级<font color='red'>LED</font>照明脉冲宽度调节 (PWM) 控制器TPS92210 优势
解析LED路灯中恒流模块的选择应用
我们知道所有的 LED 都必须采用恒流源供电,但是目前很多路灯制造商大多是在LED模块已经设计好的情况下再来寻找合适的恒流模块。殊不知这种设计方法是会遇到问题的,至少使得这种设计不是最佳的。有可能还会要重新设计LED模块。   经常会收到客户的电话询问,你们的恒流驱动模块能够带多大的功率啊?这种问题实际上是无法回答的。因为恒流模块能够带多大的功率是和很多因素有关。   从恒流模块本身来说,它主要是和散热要求和散热条件有关,当然也和驱动芯片的电流驱动能力有关。然而即使这些都已经确定下来,例如已经选定了SLM2842这一款恒流模块,那么他的驱动能力似乎应该完全确定了!其实不然!虽然它的极限驱动能力是可以知道,例如它的最大开关电流
[电源管理]
解析<font color='red'>LED</font>路灯中恒流模块的选择应用
LED驱动设计思想
LED在可携式产品中背光源的地位已经不可动摇,即便是在大尺寸LCD的背光源当中,LED也开始挑战CCFL(冷阴极萤光灯)的主流地位;而在照明领域,LED作为半导体照明最关键的部件,更是因为顶着节能、环保、长寿命、免维护等诸多光环而受到市场的追捧。驱动电路是LED(发光二极管)产品的重要组成部分,无论在照明、背光源还是显示板领域,驱动电路技术架构的选择都应与具体的应用相匹配。 LED的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。LED驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。LED驱动电路除了要满足安全要求外
[电源管理]
关于LED照明产品色彩质量中色彩清晰度的定性研究
人类的 照明 技术从第一个灯泡发明到现在已经经过了135年的发展,光源的种类也从白炽灯、荧光灯、气体放电灯发展到新一代的 LED照明 光源。照明技术的发展有三个重要的指标,第一个是光效,第二个是寿命,第三个是显色指数。对于前两个个指标来说,随着照明技术的发展不断提高的,但是第三个指标显色指数并没有随着照明计算的发展而不断提高,主要原因是受限与显色指数这个指标的理论定义。   国际照明委员会CIE对于显色性CR(colorrendering)的定义是 : 与标准的参考光源相比较,一个光源对物体颜色外貌所产生的有意识和无意识的效果 。照明行业目前只有一个普遍接受的评价显色性的方法--显色指数CRI(colorrender
[电源管理]
关于<font color='red'>LED</font>照明产品色彩质量中色彩清晰度的定性研究
拥有LED完整产业链,南昌光谷造出“世界芯”
    中国江西网讯 说起“光谷”,大家不一定会跟南昌联系到一起。可说起LED,却一定会想到南昌街头无处不见的LED路灯。事实上,南昌也有自己的“光谷”了,短短两年多时间里,包括LED产业、移动通讯终端产业及其他光电领域,已经在这片红土地落地生根,在此背景下南昌正在打造“一谷多园”的产业布局。南昌光谷带来的产业集群,正从初期的政策集群,向着产业生态集群“质变”。     南昌有LED完整产业链 核心技术全球“领跑”     南昌作为我国半导体照明工程产业化基地之一,在国内半导体照明产业中占有重要地位。据了解,南昌现有半导体照明企业30余家,2016年实现主营业务收入65亿元。初步形成了高新区重点发展硅衬底LED芯片和MOCVD设
[半导体设计/制造]
采用STM32 单片机的太阳能LED街灯解决方案
  随着化石类能源的日益减少,以及温室气体的过度排放导致全球变暖问题越来越受到重视,人们一方面在积极开发各类可再生新能源,另一方面也在倡导节能减排的绿色环保技术。太阳能作为取之不尽、用之不竭的清洁能源,成为众多可再生能源的重要代表;而在照明领域,寿命长、节能、安全、绿色环保、色彩丰富、微型化的LED固态照明也已被公认为世界一种节能环保的重要途径。太阳能-LED街灯同时整合了这两者的优势,利用清洁能源以及高效率的LED实现绿色照明。   本文介绍的太阳能-LED街灯方案,能自动检测环境光以控制路灯的工作状态,最大功率点追踪(MPPT)保证最大太阳能电池板效率,恒电流控制LED,并带有蓄电池状态输出以及
[电源管理]
采用STM32 单片机的太阳能<font color='red'>LED</font>街灯解决方案
LED应用渐强,强劲跨入2009年
2008已步入尾声,2009年LED应用趋势渐强。由中国大陆市场带动的大规模LED照明与户外广告牌应用,预期将刺激2009年全球LED产值大幅成长15.7%,创下86.77亿美元的新高纪录。台湾LED产值也将达到23.14亿美元,成长率18.24%表现优于全球。 LED照明灯饰市场部份,除了国际展览赛事推波助澜外,各国政府大型采购和LED照明示范计划的实施,以及LED照明灯饰规格相继定案,预计2009年全球LED路灯市场渗透率将突破1%,开始迈入快速成长期。面对中国大陆LED业者挑战,集团式经营与策略联盟将成为2009年台湾业者稳固市场地位的关键。 具有高发光效率与高亮度等优点的白光LED,被视为LED迈入照明领域的重
[电源管理]
盛群推出新款点阵LED型8位微控制器
盛群半导体推出具备高驱动电流的8位微控制器(MCU)新产品HT48R52A,具有多达40个输入/输出接脚,最高可耐受40mA的电流,可直接驱动LED,节省外部组件数目,适用于日益普及的各式LED应用产品。产品并具有极低的功耗,在3伏特的工作电压下有低至300uA的工作电流,而在进入省电模式后,在实时时钟仍在工作状态下,耗电流更低达0.8uA,可延长电池的使用时间,应用产品也能更加符合绿色能源之潮流。 HT48R52A使用盛群半导体的8位微控制器核心,工作频率可用软件程序切换,快速模式最高可达8MHz,慢速模式为32768Hz适用于有低耗电需求的产品。产品提供40个输入/输出接脚,可用于控制各种开关或推动LED等显示装置,并具
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved