高功率LED的封装结构分析

最新更新时间:2012-02-18来源: 21ic关键字:高功率  LED  封装结构 手机看文章 扫描二维码
随时随地手机看文章

  长久以来显示应用一直是led发光元件主要诉求,并不要求LED高散热性,因此LED大多直接封装于一般树脂系基板,然而2000年以后随著LED高辉度化与高效率化发展,尤其是蓝光LED元件的发光效率获得大幅改善,液晶、家电、汽车等业者也开始积极检讨LED的适用性。

  现今数码家电与平面显示器急速普及化,加上LED单体成本持续下降,使得LED应用范围,以及有意愿采用LED的产业范围不断扩大,其中又以液晶面板厂商面临欧盟颁布的危害性物质限制指导(RoHS: Restriction of Hazardous Substances Directive)规范,而陆续提出未来必须将水银系冷阴极灯管(CCFL: Cold Cathode Fluorescent Lamp)全面无水银化的发展方针,其结果造成高功率LED的需求更加急迫。

  技术上高功率LED封装后的商品,使用时散热对策实为非常棘手,而此背景下具备高成本效率,且类似金属系基板等高散热封装基板的产品发展动向,成为LED高效率化之后另1个备受嘱目的焦点。

  环氧树脂已不符合高功率需求

  以往LED的输出功率较小,可以使用传统FR4等玻璃环氧树脂封装基板,然而照明用高功率LED的发光效率只有20%~30%,且芯片面积非常小,虽然整体消费电力非常低,不过单位面积的发热量却很大。

  汽车、照明与一般民生业者已经开始积极检讨LED的适用性,业者对高功率LED期待的特性分别是省电、高辉度、长使用寿命、高色彩再现性,这意味著散热性佳是高功率LED封装基板不可欠缺的条件。

  树脂基板的散热极限多半只支持0.5W以下的LED,超过0.5W以上的LED封装大多改用金属系与陶瓷系高散热基板,主要原因是基板的散热性对LED的寿命与性能有直接影响,因此封装基板成为设计高辉度LED商品应用时非常重要的元件。

  金属系高散热基板又分成硬质(rigid)与可挠曲(flexible)系基板两种,硬质系基板属于传统金属基板,金属基材的厚度通常大于1mm,广泛应用在LED灯具模块与照明模块,技术上它与铝质基板相同等级高热传导化的延伸,未来可望应用在高功率LED封装。

  可挠曲系基板的出现是为了满足汽车导航仪等中型LCD背光模块薄形化,以及高功率LED三次元封装要求的前提下,透过铝质基板薄板化赋予封装基板可挠曲特性,进而形成兼具高热传导性与可挠曲性的高功率LED封装基板。

  


 

  图说:环氧树脂耐热性比较差,在LED芯片本身的寿命结束前,环氧树脂就已经出现变色。

  高效率化 金属基板备受关注

  硬质金属系封装基板是利用传统树脂基板或是陶瓷基板,赋予高热传导性、加工性、电磁波遮蔽性、耐热冲击性等金属特性,构成新世代高功率LED封装基板。

  高功率LED封装基板是利用环氧树脂系接著剂将铜箔黏贴在金属基材的表面,透过金属基材与绝缘层材质的组合变化,制成各种用途的LED封装基板。

  高散热性是高功率LED封装用基板不可或缺的基本特性,因此上述金属系LED封装基板使用铝与铜等材料,绝缘层大多使用高热传导性无机填充物(Filler)的环氧树脂。铝质基板是应用铝的高热传导性与轻量化特性制成高密度封装基板,目前已经应用在冷气空调的转换器(Inverter)、通讯设备的电源基板等领域,也同样适用于高功率LED封装。

  一般而言,金属封装基板的等价热传导率标准大约是2W/mK,为满足客户4~6W/mK高功率化的需要,业者已经推出等价且热传导率超过8W/mK的金属系封装基板。由于硬质金属系封装基板主要目的是支持高功率LED封装,因此各封装基板厂商正积极开发可以提高热传导率的技术。

  硬质金属系封装基板的主要特征是高散热性。高热传导性绝缘层封装基板,可以大幅降低LED芯片的温度。此外基板的散热设计,透过散热膜片与封装基板组合,还望延长LED芯片的使用寿命。

  金属系封装基板的缺点是基材的金属热膨胀系数非常大,与低热膨胀系数陶瓷系芯片元件焊接时情形相似,容易受到热循环冲击,如果高功率LED封装使用氮化铝时,金属系封装基板可能会发生不协调的问题,因此必须设法吸收LED模块各材料热膨胀系数差异造成的热应力,藉此缓和热应力进而提高封装基板的可靠性。

  

 

  图说:LED芯片大多利用芯片大型化、改善发光效率、采用高取光效率的封装,及大电流化,以达到高亮度的目标。

  封装基板业者积极开发可挠曲基板

  可挠曲基板的主要用途大多集中在布线用基板,以往高功率晶体管与IC等高发热元件几乎不使用可挠曲基板,最近几年液晶显示器为满足高辉度化需求,强烈要求可挠曲基板可以高密度设置高功率LED,然而LED的发热造成LED使用寿命降低,却成为非常棘手的技术课题,虽然利用铝板质补强板可以提高散热性,不过却有成本与组装性的限制,无法根本解决问题。

  高热传导挠曲基板在绝缘层黏贴金属箔,虽然基本结构则与传统挠曲基板完全相同,不过绝缘层采用软质环氧树脂充填高热传导性无机填充物的材料,具有与硬质金属系封装基板同等级8W/mK的热传导性,同时兼具柔软可挠曲、高热传导特性与高可靠性。此外可挠曲基板还可以依照客户需求,将单面单层面板设计成单面双层、双面双层结构。

  高热传导挠曲基板的主要特征是可以设置高发热元件,并作三次元组装,亦即可以发挥自由弯曲特性,进而获得高组装空间利用率。

  根据实验结果显示使用高热传导挠曲基板时,LED的温度约降低100C,此意味温度造成LED使用寿命的降低可望获得改善。事实上除了高功率LED之外,高热传导挠曲基板还可以设置其它高功率半导体元件,适用于局促空间或是高密度封装等要求高散热等领域。

  有关类似照明用LED模块的散热特性,单靠封装基板往往无法满足实际需求,因此基板周边材料的配合变得非常重要,例如配合3W/mK的热传导性膜片,可以有效提高LED模块的散热性与组装作业性。

  

 

  图说:透过铝质基板薄板化后,达到可挠曲的特性,且能具有高热传导特性。

  陶瓷封装基板对热歪斜非常有利

  如上所述白光LED的发热随著投入电力强度的增加持续上升,LED芯片的温升会造成光输出降低,因此LED封装结构与使用材料的检讨非常重要。以往LED使用低热传导率树脂封装,被视为影响散热特性的原因之一,因此最近几年逐渐改用高热传导陶瓷,或是设有金属板的树脂封装结构。LED芯片高功率化常用方式分别包括了:LED芯片大型化、改善LED芯片发光效率、采用高取光效率封装,以及大电流化等等。

  虽然提高电流发光量会呈比例增加,不过LED芯片的发热量也会随著上升。因为在高输入领域放射照度呈现饱和与衰减现象,这种现象主要是LED芯片发热所造成,因此LED芯片高功率化时,首先必须解决散热问题。

  LED的封装除了保护内部LED芯片之外,还兼具LED芯片与外部作电气连接、散热等功能。LED封装要求LED芯片产生的光线可以高效率取至外部,因此封装必须具备高强度、高绝缘性、高热传导性与高反射性,令人感到意外的是陶瓷几乎网罗上述所有特性,此外陶瓷耐热性与耐光线劣化性也比树脂优秀。

  传统高散热封装是将LED芯片设置在金属基板上周围再包覆树脂,然而这种封装方式的金属热膨胀系数与LED芯片差异相当大,当温度变化非常大或是封装作业不当时极易产生热歪斜,进而引发芯片瑕疵或是发光效率降低。

  未来LED芯片面临大型化发展时,热歪斜问题势必变成无法忽视的困扰,针对上述问题,具备接近LED芯片的热膨胀系数的陶瓷,可说是对热歪斜对策非常有利的材料。

  高功率加速陶汰树脂材料

  LED封装用陶瓷材料分成氧化铝与氮化铝,氧化铝的热传导率是环氧树脂的55倍,氮化铝则是环氧树脂的400倍,因此目前高功率LED封装用基板大多使用热传导率为200W/mK的铝,或是热传导率为400W/mK的铜质金属封装基板。

  半导体IC芯片的接合剂分别使用环氧系接合剂、玻璃、焊锡、金共晶合金等材料。LED芯片用接合剂除了上述高热传导性之外,基于接合时降低热应力等观点,还要求低温接合与低杨氏系数等等,而符合这些条件的接合剂分别是环氧系接合剂充填银的环氧树脂,与金共晶合金系的Au-20%Sn。

  接合剂的包覆面积与LED芯片的面积几乎相同,因此无法期待水平方向的热扩散,只能寄望于垂直方向的高热传导性。根据模拟分析结果显示LED接合部的温差,热传导性非常优秀的Au-Sn比低散热性银充填环氧树脂接合剂更优秀。

  LED封装基板的散热设计,大致分成LED芯片至框体的热传导、框体至外部的热传达两大方面。

  热传导的改善几乎完全仰赖材料的进化,一般认为随著LED芯片大型化、大电流化、高功率化的发展,未来会加速金属与陶瓷封装取代传统树脂封装方式,此外LED芯片接合部是妨害散热的原因之一,因此薄接合技术成为今后改善的课题。

  提高LED高热排放至外部的热传达特性,以往大多使用冷却风扇与热交换器,由于噪音与设置空间等诸多限制,实际上包含消费者、照明灯具厂商在内,都不希望使用上述强制性散热元件,这意味著非强制散热设计必须大幅增加框体与外部接触的面积,同时提高封装基板与框体的散热性。

  具体对策如:高热传导铜层表面涂布利用远红外线促进热放射的挠曲散热薄膜等,根据实验结果证实使用该挠曲散热薄膜的发热体散热效果,几乎与面积接近散热薄膜的冷却风扇相同,如果将挠曲散热薄膜黏贴在封装基板、框体,或是将涂抹层直接涂布在封装基板、框体,理论上还可以提高散热性。

  有关高功率LED的封装结构,要求能够支持LED芯片磊晶接合的微细布线技术;有关材质的发展,虽然氮化铝已经高热传导化,但高热传导与反射率的互动关系却成为另1个棘手问题,一般认为未来若能提高氮化铝的热传导率,对高功率LED的封装材料具有正面助益。

关键字:高功率  LED  封装结构 编辑:探路者 引用地址:高功率LED的封装结构分析

上一篇:LCD偏光片的性能指标及其影响因素
下一篇:电流幅度的电路LED显示设计

推荐阅读最新更新时间:2023-10-18 16:24

LED照明,将替换白炽灯和节能灯
     有专家预计,目前最有可能大幅替代白炽灯的是自镇流LED灯。发展LED灯不存在环保上的压力,所需的原材料荧光粉资源供应也十分充足。不过,中国照明协会的专家表示,虽然人们都看好LED市场,但国内企业还是主要集中在封装和应用等下游领域,LED有几项核心技术目前仍然掌握在国外企业手中。        白炽灯在使用时仅有5%的电能用于照明,其余95%全部由热量消耗。而节能灯能将90%的电能转换为光能,达到同样的光效,消耗的能量是白炽灯的1/5,寿命一般是白炽灯的5倍。   近期,国家发改委有关领导在淘汰低效照明产品国际研讨会上表示,国家目前正在制定淘汰低效照明产品路线图,计划分期逐步淘汰不同型号的白炽灯,推广高效照明产品。   
[电源管理]
高取光率低热阻功率型LED封装技术
  超高亮度LED的应用面不断扩大,首先进入特种照明的市场领域,并向普通照明市场迈进。由于LED芯片输入功率的不断提高,对这些功率型LED的封装技术提出了更高的要求。功率型LED封装技术主要应满足以下两点要求:一是封装结构要有高的取光效率,其二是热阻要尽可能低,这样才能保证功率LED的光电性能和可靠性。   半导体LED若要作为照明光源,常规产品的光通量与白炽灯和荧光灯等通用性光源相比,距离甚远。因此,LED要在照明领域发展,关键是要将其发光效率、光通量提高至现有照明光源的等级。功率型LED所用的外延材料采用MOCVD的外延生长技术和多量子阱结构,虽然其内量子效率还需进一步提高,但获得高发光通量的最大障碍仍是芯片的取光效率低。现有的
[电源管理]
首只半导体多面立体灯泡在廊坊问世
LED(发光二极管)照明节能环保,但光线单一影响照明效果,成为取代传统灯泡的技术瓶颈。由河北廊坊市鑫谷光电公司研制的全球首只半导体多面立体发光灯泡日前亮相"2009中国(北京)第十届国际照明展"。 电灯从发明至今,经历了白炽灯、荧光灯、半导体照明等阶段。白炽灯的最大缺点是浪费能源,因为它的大部分电能会转化成热能损耗掉。荧光灯即日光灯,它比白炽灯节能,但它的频闪对视力有损害,且因含汞蒸汽会污染环境。LED(半导体发光二极管)是一种不需要钨丝,也不需要灯管的"绿色照明"。 中国工程院院士陈良惠算过这样一笔账:"如果目前全国1/3的白炽灯被半导体灯所取代,每年就可为国家节省1000亿度电,相当于三峡工程的一年发电量。"但目前
[电源管理]
手持式装置与LED照明驱动2013年LED产业
手持式装置与LED照明产品相关需求将成为2013年LED市场的主要驱动因素,预估明年全球LED产值将达124亿美元,相较2012年成长12%。在产业动态方面,由于整体LED产业供过于求现况短期内仍无法解决,因此各家LED厂商将纷纷寻求新的应用与策略结盟来确保订单与提高获利空间。 大尺寸与高分辨率面板成LED背光需求新亮点 终端产品的面板平均尺寸变大与高解析的需求将驱动2013年LED市场表现,以智能型手机为例,日本与韩系智能型手机品牌在本身面板技术奥援下,开始采用4.7与5寸面板,日系品牌更是抢先推出搭载5寸高解析面板,像素高达443ppi的智能型手机, 面板尺寸增加使得LED背光颗数由以往的6~8颗增加至10颗,若以
[电源管理]
厦门2016年LED产值达323亿,出口规模占全国“半壁江山”
十三年前,全国首个国家级半导体照明工程产业化基地在厦门诞生,厦门成为中国LED照明产业的发源地之一,在2016年中国LED球泡灯出口前十大企业中,厦门籍企业独占五席,出口规模占据了全国“半壁江山”。走过“十三五”的开局之年,厦门光电产业将进一步做大做强产业集群,打造高端灯具、智能照明千亿产业链。 厦门LED产业迅猛发展的原因何在?在业界,大家把厦门LED产业的特色誉为“厦门模式”,是全国14个国家半导体照明产业化基地的发展样本之一。厦门市光电产业经过十几年的培育和发展,成绩斐然,厦门半导体照明产业基地也成为全国半导体照明领域仅有的2家A类基地之一。 十多年来,我市LED产业大力推动创新驱动、转型升级,优化完善LED产业发展
[电源管理]
Diodes 公司推出升压/SEPIC 控制器在车用照明产品应用中实现 50kHz LED 宽 PWM 调光
【2023 年 9 月 26 日美国德州普拉诺讯】 Diodes 公司 (Diodes)推出一款适用于各种车用 LED 产品应用的升压/单端初级电感转换器 (SEPIC) 控制器。 AL8853AQ 是一款符合汽车规格、高集成度的升压/SEPIC 控制器,可以降低车用 LED 产品应用 (包括车外灯、大灯、抬头显示器 (HUD) 和背光显示器) 的物料清单 (BOM)并且提供高性能。 汽车大灯制造商可以使用 SEPIC 拓扑结构,实现直接由车辆电池供电的远光或近光 LED 列阵驱动器,而非使用升压后降压转换器的传统两级拓扑结构,或全桥降压-升压拓扑结构。AL8853AQ 的 SEPIC 功能支持降压-升压型拓扑结构,具有
[汽车电子]
Diodes 公司推出升压/SEPIC 控制器在车用照明产品应用中实现 50kHz <font color='red'>LED</font> 宽 PWM 调光
AVR单片机实现LED彩灯控制器设计
如果你想改变LED接的管脚,请修改hardware.h文件。如果想修改LED的亮度,请修改globals.h 中的Timings 段定义。本设计外接了两个按钮,一个是选择工作模式,另一个是电源的开关。当你按下模式按钮1.5秒以上时,进入自动模式,会自动演示所有的预设模式。 8个LED灯直接连接到Vcc 上,不需要限流电阻。本制作利用到同步定时器,及使用睡眠的方式节省电力。 实物图: 电路图:(点击可以放大) PCB图:(点击可以放大)
[工业控制]
AVR单片机实现<font color='red'>LED</font>彩灯控制器设计
51单片机学习笔记【一】——LED灯实验
LED小灯就是一种发光二极管,正向压降是1.6V~2.2V,电流是2~20mA,2~5mA时亮度随电流的增大而增大,超过5mA后亮度不再变化,大于20mA小灯损坏。本实验采用贴片式的LED小灯,通过一个74HC573D芯片(数据手册)控制LED小灯的亮灭。 名称:LED小灯控制 说明:通过实验控制LED小灯产生不同的变化,学习LED小灯的原理和控制方法,用排线将J10与J21连接起来;P2口控制。实验中当给小灯置1时,小灯亮,置0时小灯熄灭。 实验例程如下: /*********************************************** File Name: 点亮LED Author: pen
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved