白光LED温升问题的解决方法

最新更新时间:2012-03-12来源: 21IC关键字:白光  LED  温升问题 手机看文章 扫描二维码
随时随地手机看文章

    过去LED 业者为了获得充分的白光LED 光束,曾经开发大尺寸LED芯片 试图藉此方式达到预期目标。不过,实际上白光LED的施加电力持续超过1W以上时光束反而会下降,发光效率相对降低20~30%.换句话说,白光LED的亮度如果要比传统LED大数倍,消耗电力特性超越荧光灯的话,就必需克服下列四大课题:抑制温升、确保使用寿命、改善发光效率,以及发光特性均等化。

  温升问题的解决方法是降低封装的热阻抗;维持LED的使用寿命的方法是改善芯片外形、采用小型芯片;改善LED的发光效率的方法是改善芯片结构、采用小型芯片;至于发光特性均匀化的方法是改善LED的封装方法,这些方法已经陆续被开发中。

  解决封装的散热问题才是根本方法

  由于增加电力反而会造成封装的热阻抗急剧降至10K/W以下,因此国外业者曾经开发耐高温白光LED,试图藉此改善上述问题。然而,实际上大功率LED 的发热量比小功率 LED高数十倍以上,而且温升还会使发光效率大幅下跌。即使封装技术允许高热量,不过LED芯片的接合温度却有可能超过容许值,最后业者终于领悟到解决封装的散热问题才是根本方法。

  有关LED的使用寿命,例如改用硅质封装材料与陶瓷封装材料,能使LED的使用寿命提高一位数,尤其是白光LED的发光频谱含有波长低于450nm短波长光线,传统环氧树脂封装材料极易被短波长光线破坏,高功率白光LED的大光量更加速封装材料的劣化,根据业者测试 结果显示 连续点灯不到一万小时,高功率白光LED的亮度已经降低一半以上,根本无法满足照明光源长寿命的基本要求。

  有关LED的发光效率,改善芯片结构与封装结构,都可以达到与低功率白光LED相同水平。主要原因是电流密度提高2倍以上时,不但不容易从大型芯片取出光线,结果反而会造成发光效率不如低功率白光LED的窘境。如果改善芯片的电极构造,理论上就可以解决上述取光问题。

  设法减少热阻抗、改善散热问题

  有关发光特性均匀性,一般认为只要改善白光LED的荧光体材料浓度均匀性与荧光体的制作技术,应该可以克服上述困扰。如上所述提高施加电力的同时,必需设法减少热阻抗、改善散热问题。具体内容分别是:降低芯片到封装的热阻抗、抑制封装至印刷电路基板的热阻抗、提高芯片的散热顺畅性。

  为了降低热阻抗,许多国外LED厂商将LED芯片设置在铜与陶瓷材料制成的散热器(heat sink)表面,接着再用焊接方式将印刷电路板的散热用导线连接到利用冷却风扇强制空冷的散热器上。根据德国OSRAM Opto Semi conductors Gmb实验结果证实,上述结构的LED芯片到焊接点的热阻抗可以降低9K/W,大约是传统LED的1/6左右,封装后的LED施加2W的电力时,LED芯片的接合温度比焊接点高18K,即使印刷电路板温度上升到50℃,接合温度顶多只有70℃左右;相比之下以往热阻抗一旦降低的话,LED芯片的接合温度就会受到印刷电路板温度的影响。因此,必需设法降低LED芯片的温度,换句话说,降低LED芯片到焊接点的热阻抗,可以有效减轻LED芯片降温作用的负担。反过来说即使白光LED具备抑制热阻抗的结构,如果热量无法从封装传导到印刷电路板的话,LED温度上升的结果仍然会使发光效率急剧下跌。因此,松下电工开发印刷电路板与封装一体化技术,该公司将1mm正方的蓝光LED以flip chip方式封装在陶瓷基板上,接着再将陶瓷基板粘贴在铜质印刷电路板表面,根据松下报导包含印刷电路板在内模块整体的热阻抗大约是15K/W左右。

  各业者展现散热设计功力

  由于散热器与印刷电路板之间的致密性直接左右热传导效果,因此印刷电路板的设计变得非常复杂。有鉴于此美国Lumileds与日本CITIZEN等照明设备、LED封装 厂商,相继开发高功率LED用简易散热技术,CITIZEN在2004年开始开始制造白光LED样品封装,不需要特殊接合技术也能够将厚约2~3mm散热器的热量直接排放到外部,根据该CITIZEN报道虽然LED芯片的接合点到散热器的30K/W热阻抗比OSRAM的9K/W大,而且在一般环境下室温会使热阻抗增加1W左右,即使是传统印刷电路板无冷却风扇强制空冷状态下,该白光LED模块也可以连续点灯使用。

  Lumileds于2005年开始制造的高功率LED芯片,接合容许温度更高达+185℃,比其它公司同级产品高60℃,利用传统RF 4印刷电路板封装时,周围环境温度40℃范围内可以输入相当于1.5W电力的电流(大约是400mA)。所以Lumileds与CITIZEN是采取提高接合点容许温度,德国OSRAM公司则是将LED芯片设置在散热器表面,达到9K/W超低热阻抗记录,该记录比OSRAM过去开发同级产品的热阻抗减少 40%.值得一提的是该LED模块 封装时,采用与传统方法相同的flip chip方式,不过LED模块与散热器接合时,则选择最接近LED芯片发光层作为接合面,藉此使发光层的热量能够以最短距离传导排放。

  2003年东芝Lighting曾经在400mm正方的铝合金表面,铺设发光效率为60lm/W低热阻抗白光LED,无冷却风扇等特殊散热组件前提下,试制光束为300lm的LED模块。由于东芝Lighting拥有丰富的试制经验,因此该公司表示由于模拟分析技术的进步,2006年之后超过 60lm/W的白光LED,都可以轻松利用灯具、框体提高热传导性,或是利用冷却风扇强制空冷方式设计照明设备的散热,不需要特殊散热技术的模块结构也能够使用白光LED.

  变更封装材料抑制材质劣化与光线穿透率降低的速度

  有关LED的长寿化,目前LED厂商采取的对策是变更封装材料,同时将荧光材料分散在封装材料内,尤其是硅质封装材料比传统蓝光、近紫外光LED芯片上方环氧树脂封装材料,可以更有效抑制材质劣化与光线穿透率降低的速度。由于环氧树脂吸收波长为400~450nm的光线的百分比高达45%,硅质封装材料则低于1%,辉度减半的时间环氧树脂不到一万小时,硅质封装材料可以延长到四万小时左右,几乎与照明设备的设计寿命相同,这意味着照明设备使用期间不需更换白光LED.不过硅质树脂属于高弹性柔软材料,加工时必需使用不会刮伤硅质树脂表面的制作技术,此外加工时硅质树脂极易附着粉屑,因此未来必需开发可以改善表面特性的技术。

  虽然硅质封装材料可以确保LED四万小时的使用寿命,然而照明设备业者却出现不同的看法,主要争论是传统白炽灯与荧光灯的使用寿命,被定义成“亮度降至30%以下”.亮度减半时间为四万小时的LED,若换算成亮度降至30%以下的话,大约只剩二万小时左右。目前有两种延长组件使用寿命的对策,分别是,抑制白光LED整体的温升,和停止使用树脂封装方式。

  一般认为如果彻底执行以上两项延寿对策,可以达到亮度30%时四万小时的要求。抑制白光LED温升可以采用冷却LED封装印刷电路板的方法,主要原因是封装树脂高温状态下,加上强光照射会快速劣化,依照阿雷纽斯法则温度降低10℃寿命会延长2倍。停止使用树脂封装可以彻底消灭劣化因素,因为LED产生的光线在封装树脂内反射,如果使用可以改变芯片侧面光线行进方向的树脂材质反射板,则反射板会吸收光线,使光线的取出量急剧锐减。这也是LED厂商一致采用陶瓷系与金属系封装材料主要原因。

关键字:白光  LED  温升问题 编辑:探路者 引用地址:白光LED温升问题的解决方法

上一篇:LED封装技术探讨
下一篇:基于NCL30000的单段式CrM TRIAC调光LED驱动器设计

推荐阅读最新更新时间:2023-10-18 16:29

单片机C语言程序设计:外部 INT0 中断控制 LED
/* 名称:外部 INT0 中断控制 LED 说明:每次按键都会触发 INT0 中 断,中断发生时将 LED 状态取反,产 生 LED 状态由按键控制的效果 */ #include reg51.h #define uchar unsigned char #define uint unsigned int sbit LED=P0^0; // 主程序 void main() { LED=1; EA=1; EX0=1; IT0=1; while(1); }
[电源管理]
单片机C语言程序设计:外部 INT0 中断控制 <font color='red'>LED</font>
LED照明:节电超过六成
  昨天上午,一场科技成果对接会,吸引了全省乃至全国的关注,本来只准备了300多人的会场,没想到一下子来了500多人,而且来的人构成广泛,有企业主、政府科技部门人士,以及一些风险投资基金的经理。   这个成果对接会,由中科院院地合作局、江苏省科技厅、中科院南京分院、扬州市政府主办。值得一提的是,这次会议,中科院系统半导体照明领域的专家全部到场,并且带来压箱底的最新科研成果。    LED节电六成,寿命更长   半导体照明技术为什么会这样火?这样一个高规格的产业对接活动,为什么要放在扬州召开,并且吸引了南京、苏州及苏北等市众多企业的纷至沓来?   这种照明设备就是LED(发光二极管)——一个扬州正在致力打造的产业,一
[电源管理]
探讨直流电源LED的调光技术
用调正向电流的方法来调亮度要改变 LED 的亮度,是很容易实现的。首先想到的是改变它的驱动电流,因为LED的亮度是几乎和它的驱动电流直接成正比关系。 1、调节正向电流的方法 调节LED的电流最简单的方法就是改变和LED负载串联的电流检测电阻,几乎所有DC-DC恒流芯片都有一个检测电流的接口,是检测到的电压和芯片内部的参考电压比较,来控制电流的恒定。但是这个检测电阻的值通常很小,只有零点几欧,如果要在墙上装一个零点几欧的电位器来调节电流是不大可能的,因为引线电阻也会有零点几欧了。所以有些芯片提供一个控制电压接口,改变输入的控制电压就可以改变其输出恒流值。 2、调正向电流会使色谱偏移
[电源管理]
白光LED发展历史
白光LED发展历史 LED是Light Emitting Diode发光二极管的简称。此种组件,无论是信息产品,通讯用品还是消费性家电制品,广泛普遍用于各种电子回路中,通常用来做为“显示状态”的用途。 ?? 使用红光、绿光或蓝光二极管的产品,市面上可以说四处可见。但是使用白光的发光二极管,却很少见,其中是不是有什么技术瓶颈?答案是科技界最喜欢使用的反 制招数。因为这是日亚化学工业(Nichia)的独门专利。然而,随着该公司专利战略的不得不变更,白色光LED的市场面以及性能面,有机会演起一场大变 格的戏码。市场面的首要冲激变革,即是供给体制的变化。当有更多的竞争者,进入角逐之战场以后,我们可以预期
[电源管理]
街道及停车场照明等大功率LED照明挑战暨驱动电源方案
随着人们节能环保意识的日渐增强,业界越来越关注能源消耗对环境的影响。在各种能源消耗途径中,据统计,有高达20%至22%的电能用于照明。提高照明应用的能源使用效率乃至进一步降低其能源消耗,有助于减少二氧化碳排放,造就更加绿色环保的世界。因此,高能效照明正在成为业界竞逐的一个焦点。 从应用领域来看,照明涵盖住宅照明、工业照明、街道照明和餐厅、零售及服务业照明等不同类别。而从功率等级来看,除了低功率照明,也包括大功率区域照明,典型应用如柱灯、洗墙灯、外墙灯、隧道照明、街灯、停车场及公共安全照明、工业及零售照明等室外照明,以及低顶灯、高顶灯、冻柜/冰箱及停车库等室内照明。 大功率区域照明存在不少挑战,如灯具可能难以
[电源管理]
街道及停车场照明等大功率<font color='red'>LED</font>照明挑战暨驱动电源方案
STM8的GPIO输出实验-点亮LED(软件延时)
使用ST三合一体验套件中的STM8S体验系统板。 1、让板上的三个LED点亮。 试验程序如下: #include STM8S105C_S.h void GPIO_Init(void) { PD_DDR|=0x0D;//PD0、PD2、PD3为输出,其余保持原功能 PD_CR1|=0x0D;//对应位设置为推挽输出 //PD_CR1&=0xF2;//对应位设置为模拟开漏输出(不是真正开漏) } main() { GPIO_Init(); while (1) { PD_ODR=0x0d;//PD0、PD2、PD3为输出1,LED亮 }
[单片机]
STM8的GPIO输出实验-点亮<font color='red'>LED</font>(软件延时)
汽车尾灯和刹车控制器设计分析
    现在,尾灯已广泛使用红色LED。虽然成本依旧是个问题,不过安全、环保和款式灵活多样等因素都倾向于采用LED。最受欢迎的应用之一是中央刹车灯。本设计构想展示了尾灯和刹车灯使用同一LED阵列的方法。     图1:行驶/刹车灯控制器   LED(发光二极管)亮度 一般用发光强度(Luminous Intensity)表示,单位是坎德拉cd;1000ucd(微坎德拉)=1 mcd(毫坎德 拉), 1000mcd=1 cd。室内用单只LED的光强一般为500ucd-50 mcd,而户外用单只LED的光强一般应为100 mcd-1000 mcd,甚至1000 mcd以上。   图2显示该PWM发生器,它由两个555
[嵌入式]
LED的应用实例介绍
   LED的前照灯    指采用白色LED的汽车前照灯。丰田在2007年5月17日发布的最高级混合动力车“雷克萨斯LS600h”上全球首次配备了白色发光二极管(LED)前照灯。寿命长达1万小时,点亮所需时间不超过0.1秒。功耗比HID灯的普及产品要低,与HID灯高端产品相当,今后如进一步改进,功耗预计会更低。   提高亮度,降低功耗   白色LED技术进步显著,目前已经有超过荧光灯和HID灯,发光效率达到100lm/W的产品面世。单个白色LED的光通量达到100lm以上的产品也不断涌现,在照明领域的应用正在加速推进。雷克萨斯LS600h的汽车前照灯采用了5个光通量为400lm的白色LED,实现了辅灯(Lo
[电源管理]
<font color='red'>LED</font>的应用实例介绍
热门资源推荐
热门放大器推荐
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved