基于iW3610的可调光LED驱动电源设计

最新更新时间:2012-08-15来源: 电子发烧友关键字:iW3610  可调光  LED驱动电源 手机看文章 扫描二维码
随时随地手机看文章

  普通照明用LED驱动电源一般采用的都是基于PWM控制器的反激式变换器电路拓扑。这种解决方案虽然结构简单,但一般不能利用传统白炽灯用三端双向晶闸管(TRIAC)调光器对LED进行调光,这是因为白炽灯是一种纯电阻性负载,而AC/DC电源系统与白炽灯的情况完全不同。用iW3610型AC/DC数字电源控制器构建反激式LED驱动器,可以与所有类型的调光器兼容操作,调光范围达2%~10%,并且无闪烁现象发生,在无调光器时的功率因数达0.9,系数效率达85%。

  1 iW3610的结构与特点

  iW3610采用8引脚SOIC封装,引脚配置如图1所示。

  

  iW3610芯片集成了启动和输入电压检测电路、反馈信号调节电路、A/D转换器、D/A转换器、调光器检测与相位测量电路、恒流控制电路、过电流保护比较器、峰值电流限制比较器、斩波(chopping)电路MOSFFT栅极驱动器以上主电源中MOSFET栅极驱动器等,如图2所示。

  

  iW3610各个引脚功能如下所述。

  引脚1(OUTPUT(TR)):斩波电路MOSFFT开关栅极驱动输出。

  引脚2(VSENSE):变压器辅助绕组感测信号输入,用于次级边电压反馈以对输出进行调节。

  引脚3(VIN):整流输出电压检测信号输入,用于调光器相位检测、输入欠电压/过电压保护,在启动期间为芯片提供电源电流。

  引脚4(VT):外部关闭控制端。如果关闭控制不用,应当连接一个电阻接地。

  引脚5(GND):地引脚。

  引脚6(TSENSE):初级电流感测输入,用于逐周期峰值电流控制。

  引脚7(OUTPUT):反激式变换器MOSFET开关栅极驱动输出。

  引脚8(VCC):控制器电源,启动阀值是12V,欠电压关闭门限电平为7.5V。

  iW3610采用数字控制技术,具有包括:斩波电路,其作用是提高功率因数,为调光器提供动态阻抗;隔离反激式电路拓扑,提供低成本解决方案,允许利用传统白炽灯调光器对LED进行调光。iW3610能够对墙上调光器类型进仃检测和对相位进行测量。iW3610在谷值模式开关,在无调光器时的效率可达85%。iW3610采用初级侧反馈恒流控制技术,获得容差±5%的LED电流调节。

  2 基于iW3610的可调光LED驱动电源

  采用iW3610的可调光LED驱动电源电路如图3所示。适当选择电路中元件,输出功率可达45W。

  

  2.1 电路组成

  图3所示的电路主要由以卜四个部分组成。

  一是输入EMI滤波器。L1、L2和C1组成EMI滤波器电路,R1和R2用来阻尼LC谐振振荡。

  二是桥式镇流器。BR1为全桥桥式整流器。

  三是斩波电路。VD1~VD3、C2和C4、L3、VT2、R6和R7组成斩波电路,用作为调光器提供动态阻抗。

  四是反激式变换器。U1、VT1、变换器T1等构成反激式转换器。T1初级绕组上的R8、C5和VD4,组成RCD型初级钳位电容。T1次级侧上的VD6和C7组成输出整流滤波电路,R14为预负载,T1辅助(或偏置)绕组、VD5和C6组成U1引脚VCC上的偏置电源。辅助绕组同时提供输出反馈,消除了次级侧上的感测与光电耦合反馈电路。

  调光器串接在AC线路输入相线L上。U1能够检测调光器类型(如前沿调光器、后沿调光器等),并检测调光器相位。当U1检测到调光器不存在时,电路照样可以操作,而且具有高功率因数。

  2.2 电路工作原理

  (1) 电路启动

  接通AC电源后,整流后的DC高压经电阻R3、R4和U1内部连接在引脚VIN和引脚VCC之间的二级管对电容C6充电。只要U1引脚VCC上的电压超过12V的阀值,U1中的控制逻辑使能,U1进入正常操作模式。在开始时的前3个AC半周期期间,U1引脚OUTPUT(TR)保持高电平,VT2导通。在调光器类型和AC线路周期被检测后,恒流电路使能,输出电压开始上升。当输出电压高于LED串上的总正向电压时,U1开始在恒流模式操作。

  在U1启动后,U1引脚VCC则由偏置电源供电。

  (2) 调光器检测与相位测量

  调光器检测与调光器相位测量通过电阻R3、R4和U1引脚VIN内部电路来实现。

  调光器检测分两步:第一步是确定调光器是否存存:第二步是在检测到调光器存在的情况下确定调光器的类型(是前沿调光器还是后沿调光器)。调光器检测发生在系统启动后的第三个周期。当U1引脚③上的电压VIN<0.1V的时间不超过600us时,U1则确定调光器未接入,U1将调光器类型设置在“无调光器”。如果VIN<0.1V的时间超过600us,U1则确定调光器的存在。如果调光器存在,U1将探测调光器类型。在调光器检测期间,U1引脚①输出高电平,斩波电路中的MOSFET(VT2)导通,从而为调光器产生一个纯电阻性负载。

  在发现调光器出现的第二个周期中检测VIN周期并锁定备用。当VIN超过0.1V并计数输入电压采样时,开始测量调光器相位。如果可控硅导通时间为ton,调光周期是t,调光器相位则为ton/t。调光器中可控硅的导通角越大,电源输出功率也就越大,LED则越亮;反之,调光器导通角越小,LED亮度也就越暗。

  (3) 斩波电路

  斩波电路的作用是为调光器提供动态阻抗,并为反激式转换器建立能量。VD2在电路C4上的电压Vc4低于输入电压时为充电C4提供通路,当TRIAC的触发时可以减少浪涌电流。在斩波周期期间,当VT2导通时,L3导通时,L3存储能量;当VT2关断时,L3释放能量,使VD3导通。

  L3、VT2、VD3和C4等组成的电路与常规功率因数校正(PFC)升压变换器类似。在不接入调光器时,通过L3的平均电流与输入AC电压同相位,因此产生高于0.9的功率因数。

  图4为斩波电路相关波形。

  

  (4) 初级侧反馈与恒定LED电流操作

  iW3610采用初级侧反馈,无需次级侧感测和光耦合器。T1辅助绕组(匝数为NAUX)上的电压VAUX是输出电压发射的结果。VD6上的正向压降仅约0.5V,若忽略这个正向压降,当T1次级绕组匝数为Ns时,辅助绕组上的电压则为VAUX=Uo×(NAUX/NS)。T1辅助绕组上的电压经R9和R10馈送到U1引脚VSENSE,经内部恒流控制电路将输出电流调节到一个恒定电平上,而不管输出电压与否。

  初级侧电流通过VT1源极电阻R13检测,以执行峰值电流限制(PCL)和过电流保护(OCP)。

  (5) 谷值模式开关

  在恒流输出操作期间,U1采用谷值模式开关,即VT1在漏一源极谐振电压最低点上开关,因此具有最小的开关损耗和EMI。

  (6) LED温度漂移补偿

  U1引脚VT外部连接一个NTC热敏电阻RNTC,为LED提供温度漂移补偿。RNTC能够感测到LED温度。当温度较高时,U1可使LED变暗。如果LED温度达到限制阀值,U1将关断。

  3 结束语

  iW3610是一种采用先进的数控技术的反激式电源控制器。基于iW3610的可调光LED驱动器,能够检测调光器的存在、调光器类型并测量调光器相位,无闪烁调光范围达2%~100%。iW3610采用初级侧感测技术,无需次级反馈电路和环路补偿元件,并通过脉冲接脉冲的波形分析来实现LED恒流调节。iW3610在准谐振模式的操作,在无调光器时提供85%的效率。iW3610结合一个配合调光的斩波电路,再无调光器时的功率因数达0.9。iW3610全范围的保护功能,使系统具有高可靠特性。

关键字:iW3610  可调光  LED驱动电源 编辑:探路者 引用地址:基于iW3610的可调光LED驱动电源设计

上一篇:基于TRUEC2技术的LED恒流控制
下一篇:国外调查称:LED照明普及其封装成本需降低10倍

推荐阅读最新更新时间:2023-10-17 15:01

提高大功率LED驱动电源可靠性的研究
随着LED发光效率的提高以及成本的不断下降,LED的市场正由手机背光源和汽车仪表照明,以及亮度要求不高的特殊照明和景观照明领域向普通白光照明领域扩展。   LED是一种固态冷光源,是继白炽灯、荧光灯和高强度放电灯之后的第四代光源。它具有以下特点:   ①发光效率高,能量消耗低。由于LED的光谱几乎全部集中于可见光区域,效率可达到80% ~ 90%,大功率LED照明的耗电量仅为相同亮度白炽灯的10% ~20%。   ②安全,环保。大功率LED的工作电压为3 ~4 V 的直流电,因而没有电磁干扰。LED产生的废弃物可回收,无污染,可以安全触摸,属于典型的绿色照明光源。   ③寿命长,可靠性高,LED的平均寿命长达500
[电源管理]
提高大功率<font color='red'>LED驱动电源</font>可靠性的研究
NXPSSL4101T48V150WLED驱动电源解决方案
NXP公司的SSL4101T是GreenChip III+第三代绿色开关电源控制器,集成了PFC和反激控制器,内置的绿色功能能使在所有的功率等级上具有高效率.SSL4101T是多芯片模块(MCM),包含两个芯片,适用于70 V (AC)到305 V (AC)电压,极少外接元件,并即有多种保护特性,适用于10W-300W间的所有的LED照明应用.本文介绍了SSL4101T主要特性和优势,方框图,典型配置图和应用电路图,48 V/150 W演示板(v.1.1)主要特性和指标,电路图,材料清单和PCB布局图. The GreenChip III+ is the third generation of green Switched Mode
[电源管理]
高效单级变换式LED驱动电源设计方案
摘要:无论民用或商用领域,功率100 W 以下的交流 电源 都有着巨大的应用需求。由于要兼顾输入谐波 电流 、功率因数、系统能效等问题,采用临界模式(boundary mode)的AC/DC单级 反激 式的电源拓扑成为非常完美的小功率直流电源解决方案。它具有高的转换效率,在高端小电源供应器中的应用越来越广泛,特别是在LED照明驱动方面极具优势。文章主要阐释小功率(≤100 W)单级AC/DC转换器的原理,分析其正弦调制原理及获得高功率因数、高能效的原因,并探讨了转换器的功能和优点,最后设计了一个采用仙童FAN6961 芯片 控制的48 V输出75 W 的LED驱动电源,实验验证和批量生产证明本方案设计合理、产品性能稳定、可靠性好,
[电源管理]
高效单级变换式<font color='red'>LED驱动电源</font>设计方案
一种无电解电容高亮度LED驱动电源设计
LED电源的挑战 LED作为新型的电光源,在制作大型发光立体字和发光标识中有着明显的优势,其控制电压低,成本低,可靠性高。虽然LED产品在国内外市场有着愈演愈烈的 发展趋势,但是LED照明毕竟是新兴的产业,目前还没有广泛的普及,因此LED驱动电源不可避免的在各方面存在着挑战:首先,由于LED的正向电压会随着 电流和温度而变化,其“色点”也会随着电流和温度而漂移,为了保证LED的正常工作,就要求其驱动器无论在输入条件和正向电压如何变化的情况下都要限制电 流。其次,如果需要LED调光,通常采用的是脉宽调制调光技术,典型的PWM频率是1~3kHz.最后,LED驱动电路的功率处理能力必须充足,且功能强 固,可以承受多种故障条件,易于
[电源管理]
一种无电解电容高亮度<font color='red'>LED驱动电源</font>设计
LED驱动电源的技术是怎样的
 LED驱动电源的分布式恒流技术有高可靠性的原因在于,让LED驱动电源部分继续沿用传统的驱动电源,采用恒压的供电模式,LED驱动电源技术积累会给LED电源设计创造品质条件,在同一功率电源规格下,不用再开发新的电源型号,功率可向下兼容,大大减少电源规格,提高驱动电源统一性。   软、硬结合的精度控制思路,在日常驱动电源设计中,周边器件累计误差处理起来很是棘手,导致LED驱动电源的参数离设计初衷相差甚远。   恒流驱动需要电流检测,通常做法是在支路中串接毫偶电阻获取回授信息,要达到高的效率,电阻值会越小,过小的毫偶电阻给生产、测试都带来不便,一般的仪器无法验证到正确值,LED驱动电源的生产过程也会影响到精度,电阻方式设定电流是固定方式
[电源管理]
让你进一步了解“LED驱动电源
LED驱动电源 把电源供应转换为特定的电压电流以驱动 LED 发光的电压转换器,通常情况下: LED驱动 电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。    LED驱动电源的特点   (1)高可靠   性特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。   (2)高效率   LE
[电源管理]
提高LED驱动电源效率的八种技巧
 大家都知道提高 LED驱动电源 效率最常见的就是优化电子变压器参数设计,减少振铃带来的涡流损耗。但是除了这样还有没有相关的技巧呢?现在跟大家分享提高 LED驱动 电源效率的八种技巧希望能够帮到大家。    1.主电流回路PCB尽量短。 LAYPCB的经验,及布局,这个没什么,快速的方法就是多看大厂的作品。    2.优化变压器参数设计,减少振铃带来的涡流损耗。 这个比较难,先要把电磁基础知识掌握,设计合理的变压器,最要紧的是耐心,哪怕是想到能提高0.5%的效率,也要去尝试。    3.合理选用开关器件。 这个就是成本和性能的平衡了,什么样的客户要求,用什么样的器件,但得合理。如果要效率,毫无疑问COOL
[电源管理]
基于转换器AX6066+A433的LED驱动电源设计
随着大功率LED光源的大量使用,对LED驱动器的技术要求是与日俱增。高压大功率的LED驱动能够直接接至电网(85V-265V)。能够提供100W的功率。这些驱动通常提供大电流高电压输出并且都有较高的效率。同时提供各种保护以提高驱动的可靠性。 基于AX6066+A433 LED驱动电路设计 AX6066是一个输出功率在12瓦到65瓦之间,具有原边反馈的 转换器 。AX6066适用于AC/DC电源的应用,可以满足无负载情况下交流线需要低功耗并且具有高的平均工作效率的应用要求。该芯片可以控制转换器工作在不连续的状态模式。不连续工作模式提供一个独特的安全电流限制功能,对交流线上的信号抖动也是不敏感的。峰值电流调制模式不需
[电源管理]
基于转换器AX6066+A433的<font color='red'>LED驱动电源</font>设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved