发光二极管,通常称为LED,它是半导体设备中的一种最常见的器件,大多数半导体最是由搀杂半导体材料制成(原子和其它物质)发光二极管导体材料通常都是铝砷化稼,在纯铝砷化稼中,所有的原子都完美的与它们的邻居结合,没有留下自由电子连接电流。在搀杂物质中,额外的原子改变电平衡,不是增加自由电子就是创造电子可以通过的空穴。这两样额外的条件都使得材料更具传导性。带额外电子的半导体叫做N型半导体,由于它带有额外负电粒子,所以在N型半导体材料中,自由电子是从负电区域向正电区域流动。带额外“电子空穴”的半导体叫做P型半导体,由于带有正电粒子。电子可以从另一个电子空穴跳向另一个电子空穴,从从负电区域向正电区域流动。
因此,电子空穴本身就显示出是从正电区域流向负电区域。二极管是由N型半导体物质与P型半导体物质结合,每端都带电子。这样排列使电流只能从一个方向流动。当没有电压通过二极管时,电子就沿着过渡层之间的汇合处从N型半导体流向P型半导体,从而形成一个损耗区。在损耗区中,半导体物质会回复到它原来的绝缘状态--所有的这些“电子空穴”都会被填满,所有就没有自由电子或电子真空区和电流不能流动。
为了除掉损耗区就必须使N型向P型移动和空穴应反向移动。为了达到目的,连接二极管N型一方到电流的负极和P型就连接到电流的正极。这时在N型物质的自由电子会被负极电子排斥和吸引到正极电子。在P型物质中的电子空穴就移向另一方向。当电压在电子之间足够高的时候,在损耗区的电子将会在它的电子空穴中和再次开始自由移动。损耗区消失,电流流通过二极管。
如果尝试使电流向其它方向流动,P型端就边接到电流负极和N型连接到正极,这时电流将不会流动。N型物质的负极电子被吸引到正极电子。P型物质的正极电子空穴被吸引到负极电子。因为电子空穴和电子都向错误的方向移动所以就没有电流流通过汇合处,损耗区增加。
二极管会发光的原因:
光是能量的一种形式,一种可以被原子释放出来。是由许多有能量和动力但没质量的微小粒子似的小捆组成的。这些粒子被叫做光子,是光的最基本单位。光子是因为电子移动才释放出来。在原子中,电子在原子的四周围以轨道形式移动。电子在不同的轨函数有着不同等的能量。通常来说,有着更大能量的电子以轨道移动远离了核子。当电子从一个更低的轨道跳到一个更高的轨道,能量水平就增高,反过来,当从更高轨函数跌落到更低的轨函数里时电子就会释放能量。能量是以光子形式释放出来的。更高能量下降释放更高能量的光子,它的特点在于它的高频率。
自由电子从P型层通过二极管落入空的电子空穴。这包含从传导带跌落到一个更低的轨函数,所以电子就是以光子形式释放能量。这在任何二极管里都会发生的,当二极管是由某种物质组成的时候,你只是可以看见光子。在标准硅二极管的原子,比如说,当电子跌落到相对短距离原子是以这样的方式排列。结果,由于电子频率这么低的情况下人的眼睛是无法看得到的。
可见光发光二极管,比如用在数字显示式时钟的,间隙的大小决定了光子的频率,换句话说就是决定了光的色彩。当所有二极管都发出光时,大多数都不是很有效的。在普通二极管里,半导体材料本身吸引大量的光能而结束。发光二极管是由一个塑性灯泡覆盖集中灯光在一个特定方向。
发光二极管的优点:
第一个是发光二极管没有灯丝会烧坏,所以寿命就更长。此外,发光二极管的小小塑性灯泡使得发光二极管更持久耐用。还可以更加容易适合现在的电子电路。传统白炽灯的发光过程包含了产生大量热量。这是完全是浪费能源。除非你把灯当做发热器用,因为绝大部分有效电流并不是直接产生可见光的。发光二极管所发出的热非常少,相对来说,越多电能直接发光就是越大程度上减少对电能的需求。
关键字:发光二极管 工作原理图
编辑:探路者 引用地址:发光二极管的工作原理图解分析
推荐阅读最新更新时间:2023-10-17 15:13
采用C-MOS与非门的发光二极管脉冲驱动电路
采用C-MOS与非门的发光二极管脉冲驱动电路
电路的功能
如使用发光二极管直流发光,正向偏流只能在数10MA以下,允以获得大的发光输出, 若采用缩小导通时的占空比,则可获得大的峰值电流。本电路发光频率为1KHZ,脉冲 载频为38KHZ,受发光电路很容易分辩外来光。
电路工作原理
4000系列的4011B是由4个NAND门电路组成,形成2个回路的非稳定多谐振荡器。与非 门1和与非门2是有1KHZ大占空比的振荡电路。由与二极管D1串联的R3产生短脉冲,其 周期T为T=T1+T2=1.1C1(R3+R2)。
与非门3和与非门4构成的振荡器,基振荡频率为F=38KHZ,该振荡器是为了使用遥控 接收电路
[模拟电子]
最薄弯曲发光二极管厚仅2微米 或成新显示材料
日本东京大学和奥地利约翰·开普勒大学的联合研究小组最新宣布,他们研发出世界最薄最轻的有机发光二极管(LOED),可随意弯曲,厚度仅为2微米(1毫米等于1000微米)。
据日本时事社等网站29日报道,研究小组在厚度仅为1.4微米的超薄PET塑料薄膜上,成功制造了总厚度2微米、每平方米重量仅为3克的有机发光二极管。它具有良好的柔韧性,任意弯曲都不会影响其通电性能。
研究小组此前还利用超薄高分子薄膜,成功开发出由碳分子材料组成的超薄有机太阳能电池和有机晶体管集成电子回路。此次新技术发明,可以使得有机发光二极管、有机太阳能电池和有机晶体管等元器件集成在同一个高分子薄膜上,比先前的同类电子设备更加轻薄实用。
有
[家用电子]
51单片机功能模块学习笔记 — 发光二极管
1. 发光二极管简介 发光二极管是半导体二极管的一种,可以把电能转化成光能。常简写为LED(lightemittingdiode)。 发光二极管与普通二极管一样也具有单向导电性。当给发光二极管加上正向电压(大于LED的正向压降)就会发光,当给发光二极管加上负向电压就不会发光。发光二极管的发光 亮度与通过的工作电流成正比,一般情况下,LED的正向工作电流在10mA左右,若电流过大时会损坏LED,因此使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算: R=(E-UF)/IF 式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。 普通发光二极管的正向饱和压降为1.4~2.1V,正向
[单片机]
台湾科学家研制出氧化锌白光发光二极管(LED)
台湾的科学家最近以氧化锌(ZnO)/蓝光有机材料复合薄膜,制作出白光发光二极管(LED)。他们利用水热法(hydrothermalmethod),成功地在蓝光有机发光薄膜上生长无机ZnO纳米柱(nanorod)阵列。此技术有别于传统LED的外延生长制作方式,不仅方法简单且全程低温,对于未来发展白光光源极具吸引力。
一般白光发光二极管可分为无机及有机两类。过去无机白光发光组件的制作需考虑材料晶格匹配的问题,且需要高真空高温的制程设备,因此制造成本高昂;而有机白光发光组件在白光材料的开发上需要昂贵且复杂的化学反应,若是由三层RGB有机材料所组成的白光组件,还需顾虑到各层材料发光强度及寿命不一致的问题
发
[电源管理]
发光二极管闪烁程序(位操作)
//位操作点亮发光二极管
#include compiler_defs.h
#include c8051F500_defs.h
sbit D2=P1^3;
void OSCILLATOR_Init(void)
{
U8 SFRPAGE_save = SFRPAGE;
SFRPAGE = CONFIG_PAGE;
OSCICN = 0x87; // Set internal osc. divider to 1
SFRPAGE = SFRPAGE_save;
}
void PORT_Init(void)
{
U8 SFRPAGE_save = S
[单片机]
如何确定LED屏幕亮度真实指数
如果要分别成都LED显示屏的亮度,那么你对于成都LED显示屏的亮度到底知道多少呢?发光二极管照明已被公认是目前最节能的照明灯具,然而,市面上出售的LED二极管的亮度却不尽一致,光凭肉眼观看难以区分。 大家都知道,白散光LED发光二极管的亮度分为几个亮度等级,是发光二极管的重要性能指标之一;常用于照明灯的LED发光二极管,一般都是用亮度为1400-1600MCD的发光管作为发光源,但是,市场所售的LED发光管鱼龙混珠,质量也是参差不齐,亮度更是不能保证,各店里标着亮度1400-1600MCD的发光二极管,很多都达不到所标注的亮度,以次充好的现象欺骗消费者,多数人并没有鉴别LED发光管亮度的能力,因此,商家说是多少亮度就是多少
[电源管理]
日本创深紫外线发光二极管输出功率纪录
日本理化学研究所和科学技术振兴机构日前公布,他们的一个研究小组开发的波长为250纳米的深紫外线发光二极管(LED)于世界上首次成功实现了15毫瓦的高输出功率, 电子 注入效率提高了80%.这种深紫外线发光二极管比目前的同类设备最高输出功率高出7倍,其杀菌效果好、可高速分解二■英等有害物质,已达到实用化水平。研究成果已于2月24日申请专利,论文预定发表在3月25日出版的《应用物理学快报》上。
波长在220纳米至350纳米之间的高功率深紫外线发光二极管在杀菌、净水、医疗、高密度光纪录、高显色性LED led /' target='_blank' 照明 以及高速分解处理公害物质等领域有广泛应用。迄今为止,深紫外线光源以准分
[电源管理]
调节发光二极管输出的电路图
调节发光二极管输出的电路图
[模拟电子]