白光LED电源设计技术

最新更新时间:2013-05-31来源: 与非网关键字:白光  LED  电源设计 手机看文章 扫描二维码
随时随地手机看文章
  随着彩色显示屏在便携市场(如手机、PDA以及超小型PC)中的广泛采用,对于一个单色LCD照明而言,就需要一个白色背光或侧光。与常用的CCFL(冷阴极荧光灯)背光相比,由于LED需要更低的功耗和更小的空间,所以其看起来是背光应用不错的选择。白光LED的典型正向电压介于3V~5V之间。由于为白光LED供电的最佳选择是选用一个恒流电源,且锂离子电池的输入电压范围低于或等于LED正向电压,因此就需要一款新型电源解决方案。

  主要的电源要求包括高效率、小型的解决方案尺寸以及调节LED亮度的可能性。对于具有无线功能的便携式系统而言,可接受的EMI性能成为我们关注的另一个焦点。当高效率为我们选择电源最为关心的标准时,升压转换器就是一款颇具吸引力的解决方案,而其他常见的解决方案是采用充电泵转换器。在本文中,我们分别对用于驱动白光LED的两款解决方案作了讨论,并探讨了他们与主要电源要求的关系。另外一个很重要的设计考虑因素是调节LED亮度的控制方法,其亮度不但会影响整个转换器的效率,而且还有可能会出现白光LED的色度变换。下面将介绍一款使用一个PWM信号来控制其亮度的简单的解决方案。与其他标准解决方案相比,该解决方案的另外一个优势就是其更高的效率。

  任务

  一旦为白光LED选定了电源以后,对于一个便携式系统来说,其主要的要求就是效率、整体解决方案尺寸、解决方案成本以及最后一项但非常重要的EMI(电磁干扰)性能。根据便携式系统的不同,对这些要求的强调程度也不尽相同。效率通常是关键的设计参数中最重要或次重要的考虑因素,因此在选择电源时,要认真考虑这一因素。图1示显示了白光LED电源的基本电路。

  该锂离子电池具有一个介于2.7V~4.2V的电压范围。该电源的主要任务是为白光LED提供一个恒定的电流和一个典型的3.5V正向电压。

  与充电泵解决方案相比,升压转换器可实现更高的效率

  一般来说,用于驱动白光LED的电源拓扑结构有两种:即充电泵或开关电容解决方案和升压转换器。这两款解决方案均可提供较高的输出和输入电压。二者主要的不同之处在于转换增益M=Vout/Vin,该增益将直接影响效率;而通常来说,充电泵解决方案的转换增益是固定不变的。一款固定转换增益为2的简单充电泵解决方案通常会产生比LED正向电压高很多的电压,如方程式(1)所示。其将带来仅为47%的效率,如方程式(2)所示。

  式中Vchrgpump为充电泵IC内部产生的电压,VBat为锂离子电池的典型电池电压。充电泵需要提供一个恒定的电流以及相当于LED3.5V典型正向电压的输出电压。通常,固定转换增益为2的充电泵会在内部产生一个更高的电压(1),该电压将会导致一个降低整体系统效率的内部压降(2)。更为高级的充电泵解决方案通过在1.5和1转换增益之间进行转换克服了这一缺点。这样就可以在电池电压稍微高于LED电压时实现在90%~95%效率级别之间运行,从而充许使用增益值为1的转换增益。方程式(3)和方程式(4)显示了这一性能改进。

  当电池电压进一步降低时,充电泵需要转换到1.5增益,从而导致效率下降至60%~70%,如示例(5)和(6)所示。

  图2显示了充电泵解决方案在不同转换增益M条件下理论与实际效率曲线图。

  转换增益为2的真正的倍压充电泵具有非常低的效率(低至40%),且对便携式设备没有太大的吸引力;而具有组合转换增益(增益为1.0和1.5)的充电泵则显示出了更好的效果。这样一款充电泵接下来的问题就是从增益M=1.0向M=1.5的转换点转换,这是因为发生增益转换后效率将下降至60%的范围。当电池可在大部分时间内正常运行的地方发生效率下降(转换)时,整体效率会降低。因此,在接近3.5V的低电池电压处发生转换时就可以实现高效率。但是,该转换点取决于LED正向电压、LED电流、充电泵I2R损耗以及电流感应电路所需的压降。这些参数将把转换点移至更高的电池电压。因此,在具体的系统中必须要对这样一款充电泵进行精心评估,以实现高效率数值。

  计算得出的效率数值显示了充电泵解决方案最佳的理论值。在现实生活中,根据电流控制方法的不同会发生更多的损耗,其对效率有非常大的影响。除了I2R损耗以外,该器件中的开关损耗和静态损耗也将进一步降低该充电泵解决方案的效率。

  通过使用一款感应升压转换器可以克服这些不足之处,该升压转换器具有一个可变转换增益M,如方程式(7)和图3所示。

  该升压转换器占空比D可在0%和实际的85%左右之间发生变化,如图3所示。

  可变转换增益可实现一个刚好与LED正向电压相匹配的电压,从而避免了内部压降,并实现了高达85%的效率。

  可驱动4白光LED的标准升压转换器

  图4中的升压转换器被配置为一个可驱动4白光LED的电流源。该器件将检测电阻器Rs两端的电压调节至1.233V,从而得到一个定义的LED电流。

  本结构中使用的升压转换器在1.233V电流检测电阻器两端将有一个压降,而检测电阻器的功耗会降低该解决方案的效率。因此,必须降低检测和调节该LED电流的压降。除此之外,对于许多应用来说,调节LED电流和LED亮度的可能性也是必须的。图5中的电路实现了这两个要求。

  在图5中,一个可选齐纳二极管被添加到了电路中,用钳位控制输出电压,以防止一个LED断开连接或出现高阻抗。一个具有3.3V振幅的PWM信号被施加到该转换器的反馈电路上,同时使用了一个低通滤波器Rf和Cf,以过滤PWM信号的DC部分并在R2处建立一个模拟电压(Vadj)。通过改变所施加PWM信号的占空比,使该模拟电压上升或下降,从而调节该转换器的反馈电压,此举会增加或降低转换器的LED电流。通过在R2处施加一个高于转换器反馈电压(1.233V)的模拟电压,可以在检测电阻器两端实现一个更低的感应电压。对于一个20mALED电流而言,感应电压从1.233V下降到了0.98V(对于10mALED电流而言,甚至会降至0.49V)。

  当使用一个具有3.3V振幅的PWM信号时,必须要将控制LED亮度的占空比范围从50%调整到100%,以得到一个通常会高于1.233V反馈电压的模拟电压。在50%占空比时,模拟电压将为1.65V,从而产生一个20mA、0.98V的感应电压。将占空比范围限制在70%~100%之间会进一步降低感应电压。由此得出的效率曲线如图6所示。

  效率还取决于所选电感。在此应用中,一个尺寸为1210的小型电感可以实现高达83%的效率,从而使总体解决方案尺寸可与一个需要两个尺寸为0603的飞跨电容充电泵解决方案相媲美。

  图7显示了LED电流作为控制LED亮度的PWM占空比的一个线性函数。

  上述解决方案显示了用于驱动白光LED的标准升压转换器的结构以及通过限制PWM占空比范围并选择一个不同的电流控制反馈网络来提高效率的可能性。按照逻辑思维,我们接下来将讨论一款集成了所有这些特性的解决方案。

  专用LED驱动器减少了外部组件数量

  图8显示了一款集成了前面所述特性的器件。直接在CTRL引脚上施加一个PWM信号就可以对LED电流进行控制。

  电流感应电压被降至250mV,且过压保护功能被集成到一个采用小型3mm×3mmQFN封装的器件中。其效率曲线如图9和图10所示。

  图10显示整个锂离子电池电压范围(2.7V~4.2V)内均可以实现80%以上的效率。在此应用中,使用了一个高度仅为1.2mm的电感(Sumida CMD4D11-4R7,3.5mm*5.3mm*1.2mm)。

  从图10中的效率曲线可以看出:在大多数应用中,升压转换器可以实现比充电泵解决方案更高的效率。但是,在无线应用中使用升压转换器或充电泵时还需要考虑EMI问题。

  对EMI加以控制

  由于这两款解决方案均为运行在高达1MHz转换频率上的开关转换器,且可以快速的上升和下降,因此无论使用哪一种解决方案(充电泵还是升压转换器)都必须要特别谨慎。如果使用的是充电泵解决方案,则不需要使用电感,因此也就不存在磁场会引起EMI的问题了。但是,充电泵解决方案的飞跨电容通过在高频率时开启和关闭开关来持续地充电和放电。这将引起电流峰值和极快的上升,并对其他电路发生干扰。因此飞跨电容应该尽可能地靠近IC连接,且线迹要非常短以最小化EMI放射。必须使用一个低ESR输入电容以最小化高电流峰值(尤其是出现在输入端的电流峰值)。

  如果使用的是一款升压转换器,则屏蔽电感器将拥有一个更为有限的磁场,从而实现更好的EMI性能。应对转换器的转换频率加以选择以最小化所有对该系统无线部分产生的干扰。PCB布局将对EMI产生重大影响,尤其要将承载开关或AC电流的线迹保持尽可能小以最小化EMI放射,如图11所示。

  粗线迹应先完成布线,且必须使用一个星形接地或接地层以最小化噪声。输入和输出电容应为低ESR陶瓷电容以最小化输入和输出电压纹波。

  结论

  在大多数应用中,与充电泵相比,升压转换器显示出了更高的效率。使用一个升压转换器(其电感大小与1210外壳尺寸一样)降低了充电泵在总体解决方案尺寸方面的优势。至少需要根据总体解决方案的尺寸对效率进行评估。在EMI性能方面,对升压转换器的设计还需要考虑更多因素和对更多相关知识的了解。

  总之,对于许多系统而言,尤其在器件拥有一个从1.0到1.5的灵活转换增益的时候,充电泵解决方案将是一个不错的解决方案。在稍微高于LED正向电压处发生从1.0到1.5的转换增益时,这样一款解决方案将实现绝佳的效率。在为每个应用选择升压转换器或充电泵解决方案时,需要充分考虑便携式系统的关键要求。如果效率是关键的要求,则升压转换器将为更适宜的解决方案。

关键字:白光  LED  电源设计 编辑:探路者 引用地址:白光LED电源设计技术

上一篇:全球LED驱动IC照明单位出货量与营业收入分析和预测
下一篇:专家称LED核心技术匮乏亟待解决

推荐阅读最新更新时间:2023-10-17 15:44

新型 Cree XLamp® XM-L EasyWhiteTM LED 为25 瓦替代灯提供低成本解决方案
    LED照明领域的市场领先者Cree 公司 (Nasdaq: CREE) 宣布推出业界首款照明级 LED ,完美结合高光输出和 XLamp®XM-L LED 的小型化封装以及Cree 独特的 EasyWhite™光色混合技术。该款全新的 XM-L EasyWhite LED 能够显著降低因色区分档、光色混合以及采用多颗分立式LED所带来的成本和复杂性,这不仅能帮助客户降低成本,并可进一步提高 LED 解决方案的性能,以满足紧凑型定向照明应用的需求;例如可用于20 至 25 瓦的卤素 MR、PAR 和 B10 型的替代灯。     在上述应用中,原先的单颗 LED 解决方案不能提供足够的光输出,达不到现有白炽灯的亮度。传统的多
[电源管理]
只有苹果办得到 让台积电、联电投入研发Micro LED
台积电董事长张忠谋派出位于七厂的先进封装单位,越级挑战,拿最顶级的半导体设备和人才,跟LED厂合作,做原本被认为精密度较低的LED上游电路测试,测试每一颗微米大小的晶粒是否能正常运作。如果不是苹果的影响力,谁有能力让台积电卖掉LED部门后,重新做起这个生意? 龙潭厂更聚集了台湾顶尖的供应链厂商,“他们经常把人叫进去开会、讨论,面板、半导体、机构都有,”一位显示器厂总经理说,“全台湾都已经问过一轮了。” “他们测试各种想法,就像放火烧遍整座森林,直到确定没问题为止。”一位产业人士观察,“只要苹果登高一呼,原本不存在的供应链就会自动成形。” 采访中,多位消息来源透露,台积电现在正用先进封装技术,和苹果合作研究微发光二极体技术。台积电
[半导体设计/制造]
51单片机 按键控制LED流水灯模式
1.将之前文件中Delay.c.h复制过来,进行添加 2.模块化编程 3.main.c #include REGX52.H #include Timer0.h #include Key.h #include INTRINS.H unsigned char KeyNum,LEDMode; void main() { P2=0xFE; Timer0Init(); while(1) { KeyNum=Key(); if(KeyNum==1) { LEDMode++; if(LEDMode =2)LEDMode=0; } } } void Timer
[单片机]
51单片机 按键控制<font color='red'>LED</font>流水灯模式
基于单片机的LED智能路灯控制系统设计方案
  随着数字技术和网络技术的发展,路灯数字化和网络化已经成为一种必然趋势。节约能源、保证灯具寿命、提高照明管理水平、美化城市夜晚和保证城市夜间出行安全等,已经成为对照明系统的一项基本要求。社会文明的不断发展、城市规模的急剧膨胀,城市照明已不仅局限于道路的照明,社会对亮灯率、开关灯的准确率、故障检测的实时性和维修的及时性、路灯的节能要求也不断增高。城市的扩大,路灯数量的迅速增长,人工控制方式在故障实时监控处理、按需控制、节能等方面已越来越不能适合城市的发展。因此对于路灯所采取的智能控制和节能措施已经非常有意义。   本文设计的LED智能路灯控制系统以STC89C58RD单片机作为主导控制芯片,可实现时钟定时开关灯,根据环境明暗
[电源管理]
基于单片机的<font color='red'>LED</font>智能路灯控制系统设计方案
集创北方LED产品助力裸眼3D技术呈现生物多样之美
(2021年10月11日,中国昆明讯)——今日,《生物多样性公约》缔约方大会第十五次会议(COP15)第一阶段会议,在云南省昆明市拉开帷幕。众所周知,近年来在生物多样性保护方面,我们全人类都面临着史无前例的挑战。虽然形势严峻,但也应该看到,只要是采取了保护行动的领域,基本都有明显改善。为了唤起公众对生物多样性话题的广泛关注,在昆明市北京路与东风东路交叉口金格中心外墙上,由中共昆明市委宣传部、昆明广播电视台出品的首个COP15裸眼3D公益宣传片惊艳亮相。该大屏采用了集创北方PWM恒流输出LED驱动芯片ICND2053,大幅提升了图像显示效果,高灰度等级让画面中的暗部纹理都清晰可见,用“芯”向世人展现了中国云南生物的多样之美。
[电源管理]
集创北方<font color='red'>LED</font>产品助力裸眼3D技术呈现生物多样之美
低功耗液晶电视LED背光源设计
  1 引言   自从欧盟施行了RoHS标准,以消除在欧盟成员国销售的电子产品中的铅、镉、汞、六价铬、多溴联苯和多溴联苯醚等物质以后,以汞作为主要成份的冷阴极荧光管(CCFL)注定将逐渐退出历史舞台。同时,绿色环保的LED亮度的提高,促使LED背光技术得到了极大的发展。LED背光凭借着色域广、工作电压低、响应时间短等优点,已呈现出取代CCFL背光的趋势。在当今低碳环保的主题下,低功耗的LED背光的竞争优势更加明显。   如何实现低功耗是LED背光的主要研究方向之一。LED背光主要由Back Cover、LGP、膜材、Mold Frame、LED Bar、BezEL和Panel等组成,其能耗主要体现在LED Bar上
[电源管理]
低功耗液晶电视<font color='red'>LED</font>背光源设计
基于垂直与水平散热模式LED光电热特性研究(二)
三、封装试验测试对比   (一)、两种不同散热结构LED的封装   为了保证可对比性,采用相同的物料(相同的芯片、固晶胶、金线、硅胶、萤光粉)分别对3528 LED及3014LED进行封装,制作色温、色坐标相近的LED灯珠,以便更好的进行亮度、光衰及色坐标等光学特性的比较分析。   (二)、初始参数测试对比   随机选取3014LED和3528LED各20个,其光通量和色温如图9、图10所示,横坐标表示LED个数,纵坐标表示光通量和相关色温CCT。      图9. 光通量比较图      图10. 色温比较图   初始参数测试结果表明,在20mA电流驱动下,3014LED的光
[模拟电子]
基于垂直与水平散热模式<font color='red'>LED</font>光电热特性研究(二)
Luxeed新款LED键盘预览
  之前曾有多款LED键盘上市,但是Luxeed动态像素LED键盘则是其中别致的一款。Luxeed键盘拥有430个LED灯,每个按键都可单独定制色彩。你可以把常用键设置高亮,或是在默认的定制风格中寻找一款合适的。   当然,比起传说中每个按键都可以定制图案的Optimus Maximus,Luxeed键盘只能变换颜色的功能着实逊色了许多,不过Luxeed的价格也因此降低了不少。   Luxeed键盘目前有黑色和白色两种选择,白色版的按键采用半透明设计LED灯可以照亮整个按键,而黑色版只有在英文字母的地方是透明的,所以两种颜色的键盘实际属于两个完全不同的风格。此LED键盘需要Windows操作系统支持,在Linux和Ma
[半导体设计/制造]
Luxeed新款<font color='red'>LED</font>键盘预览
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved