滞流控制实现LED恒流驱动

最新更新时间:2013-08-30来源: 21IC关键字:滞流控制  LED  恒流驱动 手机看文章 扫描二维码
随时随地手机看文章

设计了一款降压型L ED 恒流驱动芯片的滞环控制电路。 该芯片采用高边电流检测方案,运用滞环电流控制方法对驱动电流进行滞环控制,从而获得恒定的平均驱动电流。 设计采用简单的设计理念实现恒流驱动,不需要复杂的电路分析,能实现精确的电流控制,且自身具有稳定性。 芯片采用0. 5μm 5V/ 18V/ 40V CDMOS 工艺研制,电源电压范围为4.5V~28V ,工作温度-40 ℃~125 ℃,可为L ED 提供恒定的350mA 驱动电流,通过调节外部检测电阻,可调节恒定L ED 驱动电流。 外部提供DIM 信号,通过DIM 的占空比来调节L ED 的亮度。 Hspice 仿真结果显示:L ED 驱动电流为滞环变化的三角波,恒流精度小于6. 2 %。

1 引言

L ED(Light Emitting Diode)作为一种节能环保的绿色照明技术,在通用照明、背光照明、闪光灯、屏幕显示、信号指示及交通工具等方面有广泛的应用。相对于传统照明光源,L ED 优势明显,如高发光效率、高响应速度、耗电量少、体积小、寿命长等。目前,L ED 的驱动方式有恒压和恒流驱动两种,其中,恒流驱动是常用方式。 恒流驱动消除温度和工艺等因素引起正向电压变化所导致的电流变化,保证恒定的L ED 亮度。 在L ED 恒流驱动控制模式中,滞环电流控制模式具有诸多优点: 结构简单、自稳定、不易因噪声而发生不稳定振荡[7 ]等,使用日益广泛。 MAXIM 公司的MAXIM16819 就是L ED 恒流驱动芯片。

文中实现了一种简单的滞流控制模块,通过模块内部自建滞环比较电压, 结合DIM 控制端的PWM 信号控制功率开关管的通断,实现对L ED 的恒流控制。

2 电路设计与原理分析

2. 1 滞环控制原理

滞流控制模块应用如图1 所示,L ED 驱动电流的变化反应在检测电阻RSENSE两端的压差变化上。 本设计中,检测电阻设为0. 5Ω ,较小的检测电阻有利于降低功耗和保持较高的转换效率。 滞环电流控制模块内部自建两个电压阈值,检测电压Vcs与阈值电压进行比较,比较结果和DIM 调光信号相与来控制功率开关管的通断。

 

图1  滞流控制模块应用图示

 

图1 滞流控制模块应用图示

使用PWM 调光, 在减少电流占空周期内给L ED 提供完整电流, 例如要将亮度减半, 只需在50 %的占空周期内提供完整的电流。 通常PWM 调光信号的频率会超过100Hz ,以确保这个脉冲电流不会被人眼所察觉。

滞流控制模块内部电路如图2 所示,当DIM 信号为高电平期间,当Vcs 大于上电压阈值时,控制电路输出低电平,关闭功率开关管。 由LED、电感L 、续流二极管D 和RSENSE组成的回路使得电感继续为L ED 提供电流,电感电流逐渐减小,使得检测电压Vcs 随之减小;当Vcs 小于下阈值电压时,控制电路输出高电平,导通功率开关管,此时D 截止,形成从电源经RSENSE、L ED、L 和功率开关管到地的回路,电源为电感L 充电,电感电流上升,检测电压Vcs随之升高。 Vcs 大于上电压阈值时,控制电路关断开关管,重复上个周期的动作,这样就完成了对L ED驱动电流的滞环电流控制,使得流过L ED 的驱动电流,也就是电感电流的平均值恒定。

 

图2  滞流控制模块内部模块

 

图2  滞流控制模块内部模块

2. 2 滞环比较电压产生电路

4. 5V~28V 的输入电压经调整转换为5V 的恒定电压Vcc 为后续电路供电。 如图3 所示,A 点电位受运算放大器钳制,将等于参考电压1. 2V ,假设输出V out 为高电平,则M2 导通,流过M1 的电流为IM1 = V ref / R2 ,B 点的电压为V BL = V in - IM1 R1 ;当V out为低电平,M2 截止,流过M1 的电流变为I′M1= V ref / ( R2 + R3 ) ,B 点电压升高为V BH = V in -I′M1 R1 ,所以B 点电压的变化为ΔV B = V BH - V BL= V ref R1 R3/ R2 ( R2 + R3) ,这意味着V out由高电平变成低电平时在B 点产生的一个滞环电压,可见该滞环电压与输入电压无关,只由参考电压V ref和电阻大小决定,通过选择各电阻的阻值便可设定滞环电压的大小。

 

图3  滞流比较电压产生电路

 

图3 滞流比较电压产生电路

2. 3 运放实现电路

以上分析可知运算放大器起着重要作用,其必须具有较高的增益,才能使A 点电压精确跟随参考电压,从而准确设定B 点电平和滞环电压大小。 另外由于V out的变化频率与系统开关频率相同(系统的最大开关频率约为2MHz) ,使得流过M1 的电流也相同频率在IM1和I′M1之间快速切换,所以运放的单位增益带宽须大于系统的最大开关频率。 设计的运放结构如图4 所示,采用折叠式输入结构,可以获得较大的共模输入电压范围。

由运放的频率特性仿真图5 可知,增益达到84. 266dB ,相位裕度108°,单位增益带宽约12MHz ,满足电路要求。

 

图4  运放实现电路

 

图4 运放实现电路


图5  运放频率特性仿真

 

图5 运放频率特性仿真

2. 4 平均驱动电流

设定

 

运放将点A 电位钳位于带隙电压基准上。 由M7 - M8 、M6 - M9 组成的级联电流镜将偏置电流I1 镜像到M8 - M9 - R5 所在支路,所以Compara2tor 模块的一个输入端电压V n 保持一定,另一输入端电压V p 将跟随检测电压V cs变化。 当比较器输出V out为高电平(开关管导通) 时,B 点电压为VBL 即下限阈值检测电压V CSMIN ,当V cs下降到此阈值时,由M6~M11 组成的对称电路结构使流过R5 、R6的电流相等,此时V n = V p . 若V cs < V CSMIN ,即V p< V n ,比较器翻转,输出V out为低电平。 当V out变至低电平后,M2 截止,B 点电压将变为V BH , V BH即是上限阈值电压V CSMAX ,流过L ED 的平均驱动电流是

由B 点平均电压设定:

 

 

 

滞环电流范围:

 

 

上式决定了驱动电流的纹波大小。

3 仿真结果分析

文中电路采用0. 5μm 5V/ 18V/ 40V CDMOS工艺,用Hspice Z - 2007. 03 进行仿真。 在脉冲宽度为200μs、周期为300μs 的DIM 信号和V in = 12V(典型值) 的共同作用下,仿真结果如图6 所示。

 

图6  Vin = 12V 时的电路仿真

 

图6 Vin = 12V 时的电路仿真

分别在V in = 2. 5V , V in = 28V 的情况下,再次对L ED 驱动电流进行仿真,三次仿真数据结果分别如表1 所示。

表1 三种输入电压情况下的驱动电流

 

表1  三种输入电压情况下的驱动电流

 

在V in = 12V 时,对LED 驱动电流进行温度特性仿真,三次仿真波形结果分别如表2 所示。 可以看出,芯片的温度特性较好。

表2 Vin = 12V 情况下三种环境温度下的驱动电流

 

表2  Vin = 12V 情况下三种环境温度下的驱动电流

 

由于系统的固定延时τ对电流的纹波存在影响,实际的驱动电流峰值是IMAX +τoff di/ dt , 电流谷值是IMIN - τon di/ dt ,τoff 为从驱动电流大于设定值到功率开关关闭的系统延时,τon 为从驱动电流小于设定值到功率开关导通的系统延时, di/ dt 是电感电流变化率。 则电感若取较大值,对驱动电流平均值影响不大,但可以减小电流纹波, 反之, 这是以增加外部电感体积为代价的。

电路可达很高的效率, 一方面检测电阻中的功耗

会导致电源功率耗散,但本设计中RSENSE = 0. 5Ω,则PRSENSE 相当小,另一方面,系统效率定义为LED 消耗的功率与电源提供的功率之比, 即η = PLED/ PPOWER. 其中, PPOWER =V in3 Ivin , PLED = V LED*

,从仿真可知, Ivin 的平均值远远小于

, 所以系统的效率可以达到非常高。

 

4 结束语

文中设计了一款适用于降压型L ED 恒流驱动芯片的滞环控制电路。 采用高边电流检测方案,运用滞环电流控制方法对驱动电流进行滞环控制,从而获得恒定的平均驱动电流,通过调节外部检测电阻,可调节恒定L ED 驱动电流。 芯片采用015μm 5V/18V/ 40V CDMOS 工艺,电源电压范围为4. 5V~28V ,可为L ED 提供约恒定的350mA 驱动电流,温度特性- 40 ℃~125 ℃,可达到相当高的效率。 当V in从4. 5V 变化到28V 时,平均驱动电流变化22mA ,最大恒流精度为6. 2 %.

关键字:滞流控制  LED  恒流驱动 编辑:探路者 引用地址:滞流控制实现LED恒流驱动

上一篇:滞流控制实现LED恒流驱动
下一篇:一种单级功率因数校正LED驱动电源设计

推荐阅读最新更新时间:2023-10-12 22:25

LED行业集中度明显提升 大陆芯片龙头强者恒强
   LED 行业经过前几年的跌宕起伏,2017年逐渐回归行业正常发展状态, 芯片 大厂纷纷扩产,受 LED 照明市场、小间距市场强劲带动,行业稳健增长;汽车照明及 LED 农业应用、医疗应用成为新蓝海,航空、航天等领域也不断开发出新的应用,LED技术逐渐走向成熟。随着LED 芯片 领域供需格局改善,LED封装领域市场规模持续扩张,新兴应用不断开拓,LED行业景气度不断提升。下面就随电源管理小编一起来了解一下相关内容吧。   据统计数据显示,2017年中国半导体照明行业产值突破6500亿元,同比增长率为25.3%,其中上游 芯片 环节产值达232亿元,同比增长25.3%。2017年,中国制造商共增加了240多台新型MOCVD设备
[电源管理]
LED筒灯散热仿真及光源布局优化研究
LED 用于 照明 存在一个共性的应用难题——散热,目前的LED仅有20%~30%的光电转换效率,其余的能量转化为热量。若灯具 LED芯片 中的热量不能有效散发,会使LED芯片PN结温度过高,导致发光效率降低、芯片发射光谱发生红移、色温质量下降、荧光粉的转换效率降低 ,工作寿命下降甚至可使LED永久失效等问题 。当前LED灯具散热方案分为被动散热和主动散热,被动散热方案如自然散热、热管技术、均温板技术、回路热管技术 ;主动散热如风冷散热、微通道热沉散热、半导体制冷散热 等。这些散热方案结构相对较大,在道路照明如LED路灯、LED隧道灯等较大的灯具上可作为有效的方法,但LED筒灯由于其体积大小、外观要求、工作环境的限制影响,更多的
[电源管理]
<font color='red'>LED</font>筒灯散热仿真及光源布局优化研究
LED恒流精准控制技术详解
提到LED驱动精准度通常会想到恒流误差,其实驱动精度并不仅仅限于电流精度一项。LED是一款典型的电流驱动型器件,精准控制LED驱动电流,可决定包括光效率、电源效率、散热和产品亮度等在内的许多参数。驱动LED主要在于控制它的电流。无论是直接增、缩驱动电流,还是占空比(PWM)减小开关时间比,均是控制电流方式,但达到的目的却不相同。本文将阐述不同的驱动在不同应用中的区别。    分布式恒流驱动原理介绍   在以往的白炽灯和节能灯市场,大公司所形成的规格有限的主流灯具型号, LED很难再继续遵守。LED有它的应用灵活性,在日后的设计中会带来较多的电源规格。我们要避免过多的电源规格,不给日后量产带来诸多障碍。本着在不限制
[电源管理]
<font color='red'>LED</font>恒流精准<font color='red'>控制</font>技术详解
欧司朗创新量子点光转换技术让LED更高效
近日,欧司朗推出了新型中功率LED Osconiq S 3030 QD,此产品是欧司朗旗下首款使用量子点光转换技术的LED,专为区域照明和筒灯应用所研发,能够赋予灯具更高效、更卓越的显色性能。 量子点 (Quantum Dot,简称QD) 是纳米尺寸的半导体粒子,其直径比人类头发直径细约1万倍。由于其尺寸非常小,QD粒子的大小决定了蓝色LED灯光照射到这些纳米颗粒时被二次激发的光谱颜色。例如,尺寸在3纳米左右的QD粒子会产生绿光,而7纳米左右的则发出红光。这一创新可调谐的光转换技术现在首次应用于欧司朗光电半导体的Osconiq S 3030 QD中功率LED上,也标志着面向通用照明市场的新型LED元件迈出了第一步。 在传统
[电源管理]
欧司朗创新量子点光转换技术让<font color='red'>LED</font>更高效
单片机小白学步(14) 点亮第一个LED的程序分析
本篇我们将分析上一篇所写的程序代码。未来学习单片机的大部分精力,我们也将放在程序代码的编写上。但是不用担心,我会非常详细的介绍每个程序的编写思路和各种注意事项等。 之前我们写的程序如下: #include sbit LED = P1^0; void main() { LED = 0; while(1); } 头文件 第一行包含头文件,这个和C语言编写HelloWorld时的#include 一样。头文件reg52.h中定义了单片机的一些寄存器,如P0~P3等。至于什么是寄存器,将在原理篇中具体介绍,现在我们只要把它想象成C语言中常说的内存就好了。有兴趣的读者可以右击r
[单片机]
和而泰拟成立LED照明公司
    和而泰(002402)发布公告称,拟用超额募集资金700万元人民币投资设立控股子公司——深圳和而泰照明科技有限公司,以实施“LED现代照明产品研发与产业化项目”。     该项目总投资1亿元,重点以LED现代照明产品为研发方向,最终实现LED现代照明产品的产业化经营。首期由公司与2名自然人共同投资1000万元设立控股子公司和而泰照明,剩余9000万元将根据公司的发展,结合和而泰照明的经营需要,在2013年12月31日前逐步投入。
[电源管理]
价格竞争激烈 LED“仅作照明”已是过去时?
因较高的节能性能而采用量日益增多的LED照明,价格正在迅速下滑。在可提高业务生产效率、有助于睡眠等附加值方面的竞争已经开始。   LED照明进入了普及期,价格一直在下滑。市场营销公司的调查结果显示,日本销售的吸顶灯中,LED型所占的比率在2012年3月按数量统计达到了50.1%,月销售量首次超过了萤光管型。低价格产品的产品线得到了扩充,2012年3月的平均价格为2.2万日元,比上一年下降了约40%。   “以往,采用LED照明本身就是一种价值。而在进入了普及期的现在来看,今后将不会再是这样了”,松下照明(Panasonic Lighting )业务集团设施照明策划小组的组长山中直这样说道。   作为接
[电源管理]
价格竞争激烈 <font color='red'>LED</font>“仅作照明”已是过去时?
中国研发出世界最大功率LED光源并掌握封装技术
  华中科技大学今日发布消息,由武汉光电国家实验室(筹)微光机电系统研究部和华中科技大学能源学院合作,共同封装出了目前世界上最大功率LED光源,开发出了具有中国自主知识产权的封装技术,在国际上处于领先水平。   据称,经过多次修改设计方案,并不断借鉴海内外先进封装技术,上述研究团队完成了一千五百瓦世界最大功率LED光源的封装。该光源在多次长时间点亮后,性能稳定,满足照明功能需求。经测试,该封装技术有效降低了LED结温,改善了光源出光效果,提高了光源可靠性,解决了LED光源体积庞大、散热能力不足、出光效果差的缺点,在单位面积内可提供更高的散热解决方案。   LED技术是指利用半导体材料的电致发光特性,而将其制作成适于照明
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved