工程师推荐基于两通道PWM的LED调光调色方法

最新更新时间:2013-11-22来源: 电源网关键字:PWM  LED调光  调色方法 手机看文章 扫描二维码
随时随地手机看文章

引言

2002年美国Brown 大学David Berson 等人在哺乳动物的视网膜上发现了第三种感光细胞,它主要在调节人体内分泌、控制生理节律等非视觉生物效应方面发挥功能。照明设计也从单一地考虑视觉功能逐步过渡到考虑视觉与非视觉双重功能上。研究表明,动态照明在治疗失眠、减轻飞机时差效应、提高工作效率等方面发挥作用。

为实现LED的动态照明设计,需对光源的光色量进行实时地控制,调制出符合光生物学要求的光谱。

这里的光色量是光度量和色度量的合称。LED 常用的调光方法有模拟调光和PWM(Pulse Width Modulation)调光两种。前者是线性调节LED 电流,后者是使用开关电路以相对于人眼识别力足够高的频率来改变光输出的平均值。在调光过程中,防止色度量发生偏移相当重要。产生色偏的因素主要有两个:正向导通电流和P-N 结温度。模拟调光产生的色差取决于两者,PWM 则主要决定于后者。一般情况下PWM 产生较小的色差(白光LED因结温引起的色差不超过4SDCM),工程实践中多不考虑PWM调光产生的色差。

恒流驱动下的PWM 具有以下特点:改变LED 的占空比,光度量相应地线性改变而色度量保持恒定。光度量和色度量都是整数倍于方波周期时间内的平均值。PWM 也因具有较宽的调节范围,在工程实践中得到了广泛应用。

目前对PWM 调光调色的研究相对较少,此前尚缺乏一个利用PWM 同时控制光源光度量和色度量的量化计算方案。针对上述问题,提出了两通道PWM 调光调色的混光模型,建立了期望光色量与两通道占空比之间的一一映射。该算法能定量地调制出期望光度、色度要求的光谱,为LED 的动态照明设计提供了一个有效的实现方法。

方法

1、两通道PWM 调光调色的确定性

理论上可以证明,通过对LED 进行混光,两通道PWM的占空比与混合光的光色量之间存在确定的映射关系。这种确定性由PWM 混光技术下的几何、光度、色度约束条件共同决定。

1.1、几何约束条件

由色度学知识可知,混合光的色品坐标必在参与混光的两光源色品坐标连线上,具体位置取决于两种光源的混合比例。以此表示两通道PWM 混光的几何约束条件,用公式表示如下:

1

式中:xc、yc 和xw、yw 分别为参与混光的冷光源(高色温LED)和暖光源(低色温LED)在满电流、占空比为100%下的色坐标;xm、ym 为混合光的色坐标。

1.2、光度约束条件

改变驱动LED的PWM 占空比,其色度量不变而光度量相应地线性变化,且光度量的比值等于占空比的比值。根据测试条件,光度量可以是光通量、照度、亮度或光强,色度量可以是色品坐标或相关色温。

若已知两光源的占空比,则混合光的光度量可结合叠加原理计算如下:

2-2

式中:Yc、Yw 分别为参与混光的冷光源和暖光源在满电流、占空比为100%下的光度量;Dc、Dw 分别为冷光源和暖光源的占空比;Ym 为混合光的光度量。这就是两通道PWM 混光的光度约束条件。

1.3、色度约束条件

根据加混色原理及CIE1931 色坐标计算方法,占空比分别为Dc、Dw 时两光源混光后的色坐标应满足:

3-3

式中: Rc = Y c / yc , Rw = Yw / yw 。实际上,由几何约束条件可知,当已知两光源的色品坐标和混合光的x坐标时,混合光的y 坐标是确定的,且是唯一的。故两通道PWM 混光的色度约束条件可简化为:

4

1.4、两通道PWM 调光调色的定量计算模型

PWM 混光下,占空比是控制光色量的唯一因素。若期望的光度量为Ym,期望的色坐标为(xm,ym),则两通道占空比可结合光度、色度约束条件求得。若期望的色度量是相关色温,则需先将期望相关色温结合几何约束条件转换为期望色坐标。转换方法为:在CIE1931 色品图中做Tm 的等温线,把(xc,yc)和(xw,yw)的连线与此等温线的交点作为期望色坐标(xm,ym)。联立式(2)和式(4)并将其写成矩阵的形式如下:

5

由线性代数知识可知,当 xc ≠ xw 且 yc ≠ yw 时方程组有唯一解。由此可知,给定期望色度、光度值下的占空比是确定的,且是唯一的。此时,计算占空比与计算混合光的光色量是可逆过程。

2、两通道PWM 调光调色的局限性

理论上,混合光色坐标xm 的取值范围为[xc,xw](设 xc 《 x w),混合光的光度量 Ym 的取值范围为[0, Yc + Y w ]。混合光色度量和光度量所有可能取值所围成的区域称作理论域。事实上,两通道PWM 的调光调色方法并不能实现理论域中的所有取值,而仅可实现部分特定的区域。可实现的区域称作可行域,可行域的边界主要由电力约束条件决定。

2.1、电力约束条件

从实际意义出发,两通道的占空比还应满足0 ≤ Dc ≤1 ,0 ≤ Dw ≤1 ,将式(5)解得的Dc、Dw代入该不等式,经化简后得到两通道PWM 混光下的电力约束条件如下:

6

上述电力约束条件可由图1 表示,图中x0=(Rc xc + Rwxw ) /(R c +Rw) ,是两种LED占空比之比为1:1 时混合光的色坐标x.图中所示的整个矩形区域就是两通道PWM 混光下的理论域,阴影部分即为可行域。若参与混光的两种LED 已选定,当利用式(5)计算实现期望光色量的占空比时,应首先判断期望值是否在可行域内。若在可行域中,则可利用两通道PWM 混光方法得到。

7

图1 两通道 PWM 调光调色的理论域和可行域

否则,应考虑更换参与混光的光源。

2.2、局限性的表征

为表征两通道PWM 调光调色的能力,定义可控比,它是可行域与理论域的比值,用公式表示为:

8

式中:δ 为可控比。将式(7)化简后可得:

9

从上式可以看出,可控比由参与混光的两光源本身决定,与外在控制方法无关。可控比越大,说明PWM调控裕度越大,实现预期光度、色度值的概率越大。所以,可控比可作为光源组合选择优劣的评判标准。

从图1 中还可以看出:1) 混合光的色度量能且仅能在对应于x0 处取遍所有理论光度值;2) 若混合光的光度量不大于Yc、Yw 中的较小者,则可取遍所有理论色度值。所以要实现所有的色度值,Yc 和Yw 不应相差太大,且两者的较小值应与期望光度值中的最大值相当。同样实验表明,Rc 和Rw 的差值越小,则可控比就越大,两种LED 的利用率就越高。所以,在都能实现期望值的情况下,应选择Rc 和Rw 相差最小的光源组合。实验与结果分析

根据P.R. Boyce、J.W. Beckstead、N.H. Eklund 等人实验提供的日光照度和色温变化曲线,选取26个时间关节点上的光色值,对从黎明到中午的自然光进行模拟。根据光色值的变化范围,选择了两种高显色性白光LED,LED 的光色电等基本参数如表1 所示。

10

根据两通道PWM 调光调色的局限性,计算期望光色值在理论域中的坐标值,如图2 所示。进而根据式(5)计算落在可行域内的各光色值的占空比。单片机把各时间点具备特定占空比的方波动态分配给相应的LED 驱动芯片。两种LED 均匀分布并用乳白玻璃将灯光混合,用检测设备实时测量其混合光的光色量。

检测仪器选用SUV3000 紫外可见光谱辐射分析仪,测量过程在标准暗室中进行。测量结果如图3 所示。

11

图2 实验光色值在理论域中的分布

12

图 3 模拟从黎明到中午自然光的照度和色温变化

实测照度值与期望照度值的平均误差为15 lx,实测色温值与期望色温值平均误差为23 K.

实验过程中,实测值与理论值存在一定的误差,但总体上还是得到了很好的匹配。误差主要来自以下几个方面:1) 随着实验过程的进行,LED 芯片的结温不断升高。结温的改变会引起其光度量和色度量的变化;2) 驱动LED 芯片的PWM 波形并非理想的方波。即使在同一开关状态下,电流也并非保持恒定。

而驱动电流的变化则会导致LED 光度量和色度量的变化。占空比越小,这种情况引起的误差就越大。

3) LED 个体性差异。即使是同一型号,同一批次的LED,其光度量和色度量也会不同,特别是两者的动态特性。而在实验中认为同一种LED 具有相同的光色电参数和动态特性。4) 检测仪器的系统误差以及操作过程中的随机误差。

结论

本研究提出了一种新型的基于PWM 的调光调色方法,建立了关于期望光色量和两通道占空比的一一映射模型,可以准确的实现预期光度和色度要求的光谱,为LED 的动态照明技术提供了理论依据和实现方法。另外,该调光调色方法在LED 背光领域亦具有潜在的应用前景。

关键字:PWM  LED调光  调色方法 编辑:探路者 引用地址:工程师推荐基于两通道PWM的LED调光调色方法

上一篇:LED小贴士之驱动电源变压器检测的几种常用方法
下一篇:工程师浅析在LED灯具设计中的驱动电源模块

推荐阅读最新更新时间:2023-10-12 22:30

能用直流信号驱动LED的简单PWM调制器电路
利用可变占空比(脉宽调制或PWM)的方法,可实现LED驱动电路的调光。PWM方法可充分利用LED的功能,因为电流越大,特定功耗(温度)水平下的LED光输出就越大。因此,在LED两端施加PWM电流后,其输出的平均功耗与采用直流控制方法所产生的平均功耗相当,但工作电流更大,光输出更高。 即使可用的控制信号是直流信号,也可以用性能可预测且具良好线性的简单电路实施PWM控制。这个电路由一个双路比较器和一些外部元件组成,采用0~5V控制信号产生500Hz PWM信号,非线性度为2%,占空比可调范围为0~100%(图1)。 比较器的“B”端被配置为工作在500Hz左右的振荡器。正输入端产生三角波,振幅约为电源电压的1/10.比较器的
[电源管理]
能用直流信号驱动<font color='red'>LED</font>的简单<font color='red'>PWM</font>调制器电路
51单片机温度+pwm控制风扇转速,且温度在LCD1602上显示
原理图如下: 源代码如下: #include reg52.h #include intrins.h #include define.h #include delay.h #include LCD1602.h #include DS18B20.h #include HL_alarm.h sbit KEY3 = P3^5; //定义开始/停止 void zhuan(); unsigned char timer1; //***********************************************************************/ void main() { if(
[单片机]
51单片机温度+<font color='red'>pwm</font>控制风扇转速,且温度在LCD1602上显示
STM32 高级定时器-PWM简单使用
高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。共有4个通道有 死区有互补。 先是配置IO脚: GPIO_InitTypeDef GPIO_InitStructure; /* PA8设置为功能脚(PWM) */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
[单片机]
STM32 高级定时器-<font color='red'>PWM</font>简单使用
LED调光方法与改善
目前,就LED光源来讲,其调光的方法也要比一般白炽灯、高压钠灯及其它以节能减排为目的的电灯更易进行操作。下面的文章将就LED灯的调光方法及改善进行论述。 0 引言 在设计的初级阶段,单纯地控制LED光源必须格外小心。我们通常采取的方式是使用脉宽调变的方式对复杂的光源进行调控。这就需要设计系统的人员对LED进行驱动方面的拓扑。 降压变换器在对脉宽调变的过程中,优势非常明显。如果要求很高的调光频率和信号转换的频率,或是上述两种情况都需要的话,那么降压变换器就是最好的选择。 一、降压变换器的调光原理 控制LED进行调光从传统意义上来说,LED的调光过程是利用一个直流信号或者脉宽调变的方式来调节LED中的正向电流从而实现对LED的调光。要
[电源管理]
<font color='red'>LED</font><font color='red'>调光</font><font color='red'>方法</font>与改善
STM32F103RCT6的脉冲宽度调制(PWM)的输出设定
关键词:重映射 连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。 连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口、第二功能IO口。 注意:查看32 位基于 ARM 微控制器 STM32F101xx 与 与 STM32F103xx固件函数库 pwm.c文件: #include pwm.h //PWM输出初始化 //arr:自动重装值 //psc:时钟预分频数 void TIM2_PWM_Init(u16 arr1,u1
[单片机]
STM32F103RCT6的脉冲宽度调制(<font color='red'>PWM</font>)的输出设定
传统电机能耗测试真的准吗?
电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电机的应用十分广泛,据统计分析,目前我国总能耗的50%都属于电机能耗,尤其在工业领域,电机能耗更占据总能耗的60%以上。 事实上,自08年起,政府就将电机系统节能列入国家十大节能工程之一,在全国掀起电机节能热潮。包括工业、航天、农业、家电、水利、国防等各个电机生产和应用领域都对电机节能提出了新的要求。那么问题来了:我们该如何精准地评价一款电机的能耗和效率呢? 变频电机时代的测试新挑战 随着电机控制技术的发展和用户对电机节能的要求,很多电机都引入了变频调速的功能,实现不同工况下
[测试测量]
传统电机能耗测试真的准吗?
利用高性能PWM控制器芯片SE3910构建AC/DC转换器解
利用高性能PWM控制器芯片SE3910构建AC/DC转换器解决方案 目前,在100W以下电源方案中,一般都使用脉冲宽度调制(PWM)控制芯片来实现PWM的调制,开关控制模式相对直流工作模式有很高的工作效率,使用反激离线工作模式,提高了系统工作的安全性,非常适合应用在便携式充电设备及电源适配器,比如,手机充电器,电源适配器等,因此,AC/DC PWM开关电源芯片在市场上的需求量非常大。不过传统的AC/DC电源方案都是使用变压器次级线圈反馈模式(SSR),变压器次级反馈工作模式都需要低压端的恒压-恒流控制芯片协助完成电压的转换和实现恒流,此类应用方案增加了系统应用复杂程度,同时还增加系统方案的设计成本,本文要介绍的AC/DC
[电源管理]
利用高性能<font color='red'>PWM</font>控制器芯片SE3910构建AC/DC转换器解
固定频率PWM微功率DC/DC变换器设计
    在电池供电的计算机,消费类产品和工业设备中,DC/DC变换器是重要的部件。变换器有两种类型:线性变换器和开关变换器。开关变换器主要有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。     在此用Motorola的MC33466微功率开关稳压器来设计降压变换器、升压变换器和反激变换器。MC33466器件具有非常低的静态偏置电流(典型值15μA),含有高精度电压基准、振荡器、脉宽调制(PWM)控制器、驱动晶体管、误差放大器、反馈电阻分压器等。     MC3
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved