大功率LED照明系统散热问题的解决方案

最新更新时间:2014-07-27来源: 互联网关键字:大功率  LED照明 手机看文章 扫描二维码
随时随地手机看文章

 以单片机AT89C51为控制核心,将半导体制冷技术引入到LED散热研究中,采用PID算法和PWM调制技术实现对半导体制冷片的输入电压的控制,进而实现了对半导体制冷功率的控制,通过实验验证了该方法的可行性。

  随着LED技术日新月异的发展,LED已经走进普通照明的市场。然而,LED照明系统的发展在很大程度上受到散热问题的影响。对于大功率LED而言,散热问题已经成为制约其发展的一个瓶颈问题。而半导体制冷技术具有体积小、无须添加制冷剂、结构简单、无噪声和稳定可靠等优点,随着半导体材料技术的进步,以及高热电转换材料的发现,利用半导体制冷技术来解决LED照明系统的散热问题,将具有很现实的意义。

  1 LED热量产生的原因及热量对LED性能的影响

  LED 在正向电压下,电子从电源获得能量,在电场的驱动下,克服PN 结的电场,由N 区跃迁到P 区,这些电子与P 区的空穴发生复合。由于漂移到P 区的自由电子具有高于P 区价电子的能量,复合时电子回到低能量态,多余的能量以光子的形式放出。然而,释放出的光子只有30%~40%转化为光能,其余的60%~70%则以点振动的形式转化为热能。

  由于LED是半导体发光器件,而半导体器件随温度的变化自身发生变化,从而其固有的特性会发生明显的变化。对于LED结温的升高会导致器件性能的变化和衰减。这种变化主要体现在以下三个方面:⑴减少LED的外量子效率;⑵缩短LED的寿命;⑶造成LED发出光的主波长发生偏移,从而导致光源的颜色发生偏移。大功率LED一般都用超过1W的电功率输入,其产生的热量很大,解决其散热问题是当务之急。

  2半导体制冷原理

  半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。半导体制冷器的基本器件是热电偶对,即把一只N型半导体和一只P型半导体连接成热电偶(如图1),通上直流电后,在接口处就会产生温差和热量的转移。在电路上串联起若干对半导体热电偶对,而传热方面是并联的,这样就构成了一个常见的制冷热电堆。借助于热交换器等各种传热手段,是热电堆的热端不断散热并且保持一定的温度,而把热电堆的冷端放到工作环境中去吸热降温,这就是半导体制冷的原理。

    本文采用半导体制冷是因为与其他的制冷系统相比,没有机械转动部分、无需制冷剂、无污染可靠性高、寿命长而且易于控制,体积和功率都可以做的很小,非常适合在LED有限的工作空间里应用。

  3系统总体设计方案

  LED散热控制系统由温度设定模块、复位模块、显示模块、温度采集模块、控制电路模块[2]及制冷模块组成,系统总体框图如图1所示。该系统以微处理器为控制核心,与温度采集模块通信采集被控对象的实时温度,与温度设定模块通信设定制冷启动温度和强制冷温度。利用C语言对未处理编程可实现,当采集的实时温度小于制冷启动温度时,无PWM调制波[1,6]输出,制冷模块处于闲置状态;当采集的实时温度大于制冷启动温度但小于强制冷温度时,输出一定占空比的PWM调制波,制冷模块启动小功率的制冷方式;当采集的实时温度大于强制冷温度时,输出一定占空比的PWM调制波,制冷模块启动大功率的制冷方式。  4硬件电路设计及其元件选择

  该系统主要由温度设定、温度采集、PWM控制电路及辅助电路(复位电路和显示电路)组成。本方案采用低价位、高性能的AT89C51作为主控芯片,实现整个系统的逻辑控制功能;采用单线通信的高精度温度传感器DS18B20,实现对被控对象LED芯片实时温度的采集;同时设计了4×3输入键盘,制冷启动温度和强制冷温度由键盘输入;设计了PWM控制电路,实现对半导体制冷片TEC[5]的工作电压的控制,进而实现对半导体制冷片TEC制冷功率的控制,以达到对LED芯片及时散热的效果。

  4.1主控芯片AT89C51

  该系统的主控芯片选用的是单片机AT89C51.单片机AT89C51是美国ATMEL公司生产的低电压、高性能的处理器,为嵌入式控制系统提供了一种灵活性高的廉价方案。单片机AT89C51内含4KB的Flash储存器,可反复擦写1000次、128字节的RAM、四个并行8位双向I/O和2个16位可编程定时器。此外,主控芯片AT89C51采用频率为12MHz的晶振,这样系统运行一个机器周期,有利于程序的编写。单片机AT89C51主要功能:从键盘电路读入设定的制冷启动功率和强制功率,从温度传感器DS18B20读入实时采集的LED芯片工作温度,通过C语言编程将二者比较对光电耦合器输出PWM调制波及将DS18B20实时采集的温度输出到LCD显示。

  4.2键盘电路

  该系统采用4×3键盘[4],包含0~9共10个数字键、一个“确定”键和一个“清除”键。操作流程为:输入2位设定温度,按下“确定”,将设定温度输入到AT89C51内用户自定义区某存储单元,作为半导体制冷片的启动温度。然后,同理再次输入2位温度,作为半导体制冷片的强制冷温度。键盘工作原理:I/O口P1.0~P1.3充当行选线,P1.5~P1.7(外接上拉电阻到+5V电源)充当列选线。初始化时P1.0~P1.3置低电位,P1.5~P1.7置高电位并等待按键。当有键按下时,相应的列选线电平被强制拉低,读相应的行码和列码,则按键的编号即可确定。

  4.3温度采集电路

  该系统采用美国DALLAS公司的生产的数字温度传感器DS18B20.DS18B20是一款仅使用一根信号线(1-Wire)与单片机通信的温度测量芯片,可以测量(满足该系统的测温要求)之间的温度,利用程序编程可实现9为数字温度输出,测量精度为由于温度高于 时,DS18B20表现出的漏电流比较大,可能出现与单片机AT89C51的通信崩溃,故采用外部电源模式供电。DS18B20最大的特点就是单总线传输方式,因此对读写数据位具有严格的时序要求。时序包括:初始化时序、读时序、写时序。每一次命令和数据的传输都是从单片机的启动写时序开始,如果要求DS18B20回送数据,在进行写时序后,单片机需启动读时序完成数据接收,数据和命令的传输都是地位在先。

    4.4PWM控制电路

  PWM.控制电路由光电耦合器和一个Cuk电路[3]组成。在此控制电路中,光电耦合器能够有效抑制接地回路的噪声,消除地干扰,提高了整个系统的抗干扰能力;光电耦合器把输入端(单片机AT89C51)和输出端(半导体制冷片TEC)电气隔离,避免了主控芯片AT89C51受到意外伤害,有效保护了单片机AT89C51.另外,此控制电路中还利用光电耦合器组成了开关电路,节省了开关器件的使用。Cuk直流斩波电路的功能是将+15V的外接电源转变为可调电压的直流电,即Cuk电路输出端的电压(半导体制冷片TEC的工作电压)是可调的。输出端OUT+和OUT-之间的可调电压是受Q1端和Q2之间的关断频率控制的。在此控制电路中选用Cuk电路,因为Cuk斩波电路有一个明显的优点,即其输入电源电流和输出负载电流都是连续的,且脉动很小,有利于保证半导体制冷片TEC处于良好的工作状态。

  限于篇幅有限,下面仅对此PWM控制电路进行简单的介绍:当PWM控制信号为低电平时,晶体管T1处于截止状态,光电耦合器中发光二极管的电流近似为零,输出端Q1和Q2间的电阻很大,相当于开关“断开”;当PWM波控制信号为高电平时,晶体管T1处于导通状态,光电耦合器中发光二极管发光,输出端Q1和Q2间的电阻很小,相当于开关“导通”.由上面介绍可知,当DS18B20采集的实时温度小于制冷启动温度时,光电耦合器的PWM输入端无信号输入时,光电耦合器处于不工作状态,图5中的OUT+端和OUT-端无输出电压,即半导体制冷片处于闲置状态;当DS18B20采集的实时温度大于制冷启动温度时,光电耦合器的PWM输入端有信号输入,图5中的OUT+端和OUT-端即有输出电压。通过PWM调制波控制Q1和Q2两端的通断,即可实现对半导体制冷片TEC工作电压的控制,进而控制了半导体制冷片TEC的散热功率。图5中的OUT+端和OUT-端分别接在半导体制冷片TEC的输入端线上。根据CUK电路的输出电压和供电电源电压的关系,可得出PWM波占空比和半导体制冷片TEC输入电压的关系:

  其中D为PWM波的占空比,

  为半导体制冷片TEC的工作电压,E为供电电源的电压(在此电路中E=15V)。由上式可知,控制PWM波的占空比就可以控制半导体制冷片TEC的工作电压。

  5结束语

  本文选择一些成本低廉相对高性能的元器件,对LED芯片工作温度不同的情况,进行不同的功率制冷,在一定程度上节约电力资源。此方案与传统的散热方案相比较,具有可控性好和制冷效果良好等优点,对于解决大功率LED照明系统散热问题具有很现实的意义。

关键字:大功率  LED照明 编辑:探路者 引用地址:大功率LED照明系统散热问题的解决方案

上一篇:LED植物生长灯知识
下一篇:图解低于9美元的LED灯泡内部设计

推荐阅读最新更新时间:2023-10-12 22:43

教你一招用无线技术控制大功率快速充电
摘要:无线技术控制充电的方式已经成为新的发展潮流和趋势,随着CANFD在汽车电子与轨道交通等行业的广泛应用,无线技术控制充电又将如何实现大功率快速充电?本文将介绍一套简单可行的方案。 传统方式充电的弊端 如图 1所示,传统的新能源汽车是采用充电枪的方式进行充电,每次操作都是需要人工控制,在多次使用插拔的过程中充电枪和汽车充电接口之间的间隙会逐渐变大,这样容易产生放电,导致充电枪烧毁。这种情况下,增加了不必要的维修成本,更严重地会发生触电安全事故或火灾等情况。 另外,传统方式充电电流最大不超过250A,充电功率较低,充电时间相对较长。随着汽车智能化、电动化、网联化的发展,未来新能源汽车采用大功率的快充方式也将成为新的趋
[汽车电子]
教你一招用无线技术控制<font color='red'>大功率</font>快速充电
传统it供应商将成为led照明推动者
  从市场反映动态观察,未来相关补贴向消费者转移成为政府助推LED产业发展的趋势。目前,LED照明市场并未启动,主要体现在三方面,第一,渗透率不高;第二,单位流明成本未下降到市场普遍接受程度;三,光通量有待进一步提高。但是,随着技术的提升以及终端消费市场的打开,企业若不能提前布局,显然将失去市场先机。   由扬州市政府首先推出的MOCVD补贴政策,对于中国其他地方政府造成跟进效应,促使全中国掀起一波投资LED的热潮。去年年末,扬州招商局表示财政补贴政策不可能一直无限期地持续下去,扬州市的财政补贴政策将于2011年7月告一段落。   实际上,目前传统照明企业无论是国际巨头还是国内巨头,LED照明在整个营销产品中的份额相当少,
[电源管理]
小巧且具较宽输入电压LM2842的LED照明
大多数人都相信高亮度LED(HBLED)将是 led /' target='_blank' 照明 最终的明智选择。HBLED的制造商大幅度地提高产品的每瓦流明数,不断地改进产品能效,这也使得HBLED越来越受欢迎。相信不久之后,LED的每瓦流明数将大大超过现在的荧光灯水平。 LED照明首先主要应用于替换低电压射灯和轨道灯这两个领域。包括替换原有的标准尺寸灯具,例如:MR16、PAR20、PAR25、PAR30和PAR38。美国国家 半导体 (NS公司)已经提供了多种解决方案用于美化LED,使其适用于这些场合,包括LM342X和LM340X系列LED 驱动 。但是不管这些LED是如何 驱动 的,他们都面临一个共同的问题:如何散
[模拟电子]
现代IGBT/MOSFET栅极驱动器提供隔离功能的最大功率限制
摘要 本文通过故意损坏IGBT/MOSFET功率开关来研究栅极驱动器隔离栅的耐受性能。 在高度可靠、高性能的应用中,如电动/混合动力汽车,隔离栅级驱动器需要确保隔离栅在所有情况下完好无损。随着Si-MOSFET/IGBT不断改进,以及对GaN和SiC工艺技术的引进,现代功率转换器/逆变器的功率密度不断提高。因此,需要高度集成、耐用的新型隔离式栅极驱动器。这些驱动器的电隔离装置体积小巧,可集成到驱动器芯片上。这种电隔离可以通过集成高压微变压器或电容器来实现。1, 2, 3 一次意外的系统故障均可导致功率开关甚至整个功率逆变器损坏和爆炸。因此,需要针对高功率密度逆变器研究如何安全实施栅级驱动器的隔离功能。必须测试和验证最坏情况
[半导体设计/制造]
现代IGBT/MOSFET栅极驱动器提供隔离功能的最<font color='red'>大功率</font>限制
改变封装技术,LED照明可靠性大增
随着蓝光和白光发光二极管(LED)在1990年大举迈向实用化阶段后,无论是利用LED所进行的全彩显示,或是在近年来社会大众对节能议题所展现的高度重视下,LED所普及到的智慧型手机、个人电脑(PC)、电视背光、照明、白色家电产品或交通号誌等多样化的产品应用领域愈来愈广。为满足市场需求,业界针对各种产品系列,包括能够实现高演色性与高可靠性的照明用LED、以PICOLED为代表产品的小型薄型LED,以及车用客製化色彩LED等倾注了相当的研发资源。    照明用白光LED产值急遽成长   受到世界节能趋势以及日本东北大地震所引发的节能意识高涨,日本市场对于照明用白光LED的需求量大增,促使LED照明市场产值正不断急遽成长,然而
[模拟电子]
改变封装技术,<font color='red'>LED照明</font>可靠性大增
浅谈LED产品老化
      很多客户在应用LED时都会出现这样的一种问题,LED焊在产品上刚开始的时候是正常工作的,但点亮一段时间以后就会出现暗光、闪动、死灯、间断亮等现象。给产品带来严重的损害。   引起这种现象的原因大致有:   1: 应用产品时,焊接工艺有问题,例如焊接温度过高焊接时 间过长,没有做好防静电工作等。   2: LED本身质量或生产工艺造成的。   预防方法有:   * 做好焊接工艺的控制。   * 对产品进行老化测试。   LED老化测试在产品质量控制是一个非常重要的环节,但在很多时候往往被忽视,不能进行正确有效的老化。   LED老化方式包括恒流老化及恒压老化,恒流老化是最符合LED电流工作特性,是最科学的LED老化方式;
[电源管理]
光伏电站:万银科技ZENIT系列大功率光伏逆变器
近日,习近平总书记在APEC工商领导人峰会上为亚太经济开出了一剂良方,那就是“坚持推进改革创新、坚持构建开放型经济、坚持落实发展议程、坚持推进互联互通”的“四个坚持”主张,其中重点指出“亚太要走在世界前面,努力创新发展理念、模式和路径。要以科技创新带动产品、管理、商业模式创新,提高亚太经济体在全球供应链中的地位,推进经济结构性改革,使供给体系更适应需求结构的变化”。这条同样适用于新能源行业,尤其是光伏逆变器行业。 万银科技董事长杜方勇先生几年前回到国内,发现国内的逆变器市场面临着很多问题,大部分大规模光伏电站都集中在条件较差、人烟稀少的地区,很多地区沙尘暴、温差大等的问题都比较严重,而逆变器内部由大量电气元器件组成,如果采用风冷,
[新能源]
L4970A大功率单片集成开关电源原理与应用
L4970A 系列大功率单片集成开关电源是ST 公司继L4960 系列之后推出的第二代产品。电路的特点是:采用DMOS 开关功率管、混合式CMOS/ 双极型晶体管等集成电路制造新工艺研制而成;输出电压在5. 1V~40V 范围内连续可调;通过自举电容可获得大电流输出;利用掉电复位电路能实时地向微机发出信号,监视系统电源的工作状态。 1  工作原理 L4970A 的原理框图如图1 所示(注:引脚序号适用于L4970A/ 4975A/ 4977A) 。其内部功能电路主要包括基准电压源,锯齿波发生器,内置40kHz 振荡器,欠压检测与过热保护电路,误差放大器,比较器,PWM锁存器, 或非门, 触发器(由两级或门构成) , 驱动级
[电源管理]
L4970A<font color='red'>大功率</font>单片集成开关电源原理与应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved