采用混合信号高电压单片机实现LED降压

最新更新时间:2014-09-20来源: 互联网关键字:开关电源  转换器  单片机 手机看文章 扫描二维码
随时随地手机看文章

  LED背景知识

  近年来,LED逐渐成为一种可行的新兴光源,它们已经不再仅仅用作电子设备的“状态指示灯”。技术进步使得LED的发光效率通常可达白炽灯的三倍多,此外,LED还非常耐用,寿命超过上万小时。

  针对照明应用的大功率LED要采用恒流源驱动,一些标准驱动电流常常用在不同LED生产商的产品中,其中,350mA和700 mA最为常见。根据串联结的类型和数量,LED两端的正向压降可能不同。许多生产厂商的大功率LED产品都在单个模块中集成了多个结。

  驱动LED的一种简单方法是采用串联电阻来限制电流。线性稳压器或运算放大器也可连接成恒流配置。然而,此类线性方法无法在所需要的功率水平下提供足够的效率。

  开关电源(SMPS)为LED驱动提供了效率更高的解决方案,它可以将输入电压升/降至适当的电平,从而提供所需要的LED电流。系统输入电压范围以及所需要的LED正向压降决定了对SMPS拓扑结构的选择。

  降压-升压转换器

  当供电电压高于或低于需要的输出电压时,使用降压-升压转换器结构。对于电池应用来说,降压-升压转换器非常有用。降压-升压结构还称为反激式(fly-back)变压器或逆变稳压器。

  降压-升压转换器可按图1的方式实现。这种实现方案的优点是可使用简单的低端MOSFET驱动器电路,它的拓扑结构将产生相对于输入电压轨的正电压,这一降压-升压实现方案的缺点是负载并未以电路地为基准。

采用混合信号高电压单片机实现LED降压 采用PIC16HV785的电路实现方案

  图2显示了LED驱动电路的简单设计方案,其中采用了一片混合信号高电压8位单片机,如PIC16HV785。  该电路的输出相对于电池电压,而非地电位。逆变器的输出连接到LED的阳极,产生的电压值高于输入电压。

  PIC16HV785混合信号单片机集成了一个8位单片机内核和多个片上模拟外设,包括:

  •   两个片上运放,可用于放大电流检测电阻两端的电压。这样可以采用极小阻值的检测电阻,从而可以降低电路损耗并提高电路的总效率。
  •   一个高速双相位PWM电路,对于开关电源的电流模式控制非常适合。
  •   一个高电压分流稳压器,在输入电压更高时也不需要外部5V稳压器。
  •   一个数字捕捉、比较和PWM(CCP)模块。
  •   两个模拟比较器。
  •   一个10位A/D转换器。
  •   内部时钟电路,工作频率8MHz。
  •   一个内部精确电压参考源,不需要昂贵的外部器件。
  •   一个可编程欠压复位(BOR)电路。
  •   运放和比较器的所有引脚都可以通过外部访问,因此可以实现任意电路配置。

采用混合信号高电压单片机实现LED降压

  电流检测电路

  电流检测运放连接成差分放大器,以精确测量电流、检测电阻两端的电压。为简化电路要求,在电源返回路径上进行电流测量。R1、R2和C1构成一个低通滤波器,用来降低可能存在的开关噪声。为避免影响控制环的响应,该滤波器的截止频率必须大于电压转换器的开关频率。

  稳流电路

  稳定LED电流流量的电路由双相位PWM模块、内部比较器和一个参考电压源构成。双相位PWM模块是按置位/复位原理工作的“模拟”式PWM模块。首先,从系统时钟产生的一个时钟信号用来周期性地开启PWM输出。PWM时钟信号确定基本的PWM频率。然后,当达到指定的参考电平时,来自一个片上比较器的复位信号会关断PWM输出。

  放大后的电流信号内部连接到PIC16HV785中比较器1的正输入端。PWM模块使用PIC16HV785 器件中的捕捉比较外设(CCP1)来产生比较器所需要的参考电压。采用PWM可以更精细地控制比较器参考电压。利用RC滤波器对PWM信号进行滤波,从而获得一个模拟电压并将它输送给比较器的负输入端。  软件实现方案

  这一应用的软件部分非常简单,因为LED电流控制功能是采用模拟方式完成的。一旦所有外设被设为使能,并且正确设置了电流参考值,那么不需要软件干预,LED就会持续发光。

  然后,应用程序代码可以测量供电电压(利用片上集成的10位A/D转换器)和供电电流,从而保证驱动LED工作在恒定功率模式。随着电池输入电压的变化,D/A电路(采用CCP外设实现)将产生新的参考电压值进行补偿。

  设置LED亮度

  由于单片机内核在稳定功率方面仅需要花费很小一部分时间,因此更多的时间可用于用户界面以及提供更多功能,如电池状态监控和亮度控制。利用这一电路及软件调整LED亮度有两种方法。其中一种技术基于LED亮度随驱动电流而变化的原理,事实上,利用这种方法可以实现近似线性的LED亮度控制。然而改变电流实现调光并非控制LED亮度的最高效方法,只有在生产商指定的最大驱动电流水平下,LED才能够达到最高的发光效率。

  可利用一个低频PWM信号来调制LED驱动电流。采用这种方法,电流并未减小,即在点亮时,LED始终通过最大电流。但PWM信号的占空比设定了LED点亮的平均时间。PWM频率要选择得足够高,以使LED电流的开关速率足够快,从而使人眼感受不到光在闪烁;同时,PWM频率也要足够低,这样稳流电路在PWM导通时间内就有足够的时间稳定。如果这些条件都能够满足,那么人眼会对一段时间内的LED的光输出进行平均。PWM调光信号的频率通常在60Hz 到 1000Hz之间。

  总结

  PIC16HV785几乎包含了实现大功率LED驱动电路所需要的元器件。根据输入电压范围,可以方便地配备成升压或降压-升压工作模式。这一应用仅使用了单片机RAM和闪存的一小部分,为其他用户应用程序代码留下了足够的空间。实际上,PIC16HV785单片机中还有足够的未用外设,可用来实现其它LED驱动器、电池充电器或开关电路。

关键字:开关电源  转换器  单片机 编辑:探路者 引用地址:采用混合信号高电压单片机实现LED降压

上一篇:测量LED灯结温:合理寿命和成本的保证
下一篇:LED损坏原因及电路保护方法

推荐阅读最新更新时间:2023-10-12 22:45

PIC单片机与PC机串行通信的实现
随着单片机技术的发展,PIC单片机在工业控制系统中如温度、压力和流量等参数进行监测和控制中的应用越来越多。PC机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,通过PC机的RS-232串行接口与外部设备进行通讯是许多测控系统中常用的通信解决方法。它不仅利用了单片机实时控制的特点又充分发挥了PC机运算能力强和存储容量大的优势。在日常应用中通常需要进行大量的数据计算,而PIC单片机运算能力有限,必须借助PC机的数据处理能力,因此实现PIC单片机与PC机之间可靠数据传输变得尤为重要。 文中将使用PIC单片机的同步/异步串行模块(USART)和计算机进行串口通信。PC机的通信软件采用Visual C++6.0编写,具体
[单片机]
PIC<font color='red'>单片机</font>与PC机串行通信的实现
DC-DC转换器原理及应用
 当您电池的最后一焦耳电能被耗尽时,功耗和效率就将真正呈现出新含义。以一款典型的手机为例,即使没有用手机打电话,LCD屏幕亮起、显示时间及正在使用的网络运营商等任务也会消耗电力。如果它是一款更高级的手机,还可以播放您喜爱的MP3音乐或浏览视频数据。不过,每为手机增加一种功能,实际上也增加了电池的负担。对于大多数手机设计者来说,能否延长可用电力的使用时间是您的手机在下次充电前能够持续多久的关键。这意味着电力需要在各种功能模块间小心谨慎地保护和预算,以最大限度地延长电池寿命和使用。   要实现真正的效率,并不仅仅意味着DC-DC转换器在负载指定的某个操作点可以获得多高的效率,而是在DC-DC转换器整个载荷范围内这种高效率能够维持多久。
[电源管理]
DC-DC<font color='red'>转换器</font>原理及应用
采用电容传感器的全电子开关电源设计
 本设计是用电容传感器按钮(PCB圆形或方形垫片)替代机电开关。PIC12CXXX MCU 非常适合于这种应用,用少量元件就可设计一种价廉的全电子开关。此方法采用一个简单的RC延迟电路(图1),当按传感器时其时间常数发生变化。      为了读出传感器的状态,微控制器必须执行如下两步(图2和图3):      1:改变输出状态,从"0"到"1"(写操作-Twr)   2:读输入状态(读操作-Trd)   假若读操作的结果是"0",这意味着传感器被按。为手指电容串联连接到电容器C,使电路的时间常数较大。   因为为手指电容小,Twr和Trd之间的间隔时间小于1~2μs,所以建议PIC1
[电源管理]
采用电容传感器的全电子<font color='red'>开关电源</font>设计
菜鸟学PIC单片机(一)
菜鸟学P IC 单片机 (一):TS1620字符型液晶模块驱动程序编写苦与乐 小弟学习PIC16F87X系列 单片机 已持续半个月了,遇到的困难还是比较多的,幸好单位的图书馆里还有一些相关的书籍,加之购买了第三方的ICD,因此学习起来还是比较充实的。 虽说如此,但在单位里找不到志同道合者一起来琢磨她,不过这里却有许多热心的站友。 今后,小弟打算将自己的一些学习心得和疑问写出来,与论坛里和我一样的初学者一起进步,并殷切希望能得到前辈的指点, 小弟写的第一个程序是控制三位八段 数码管 的显示,还没来得及总结,今天下午调试和总结了一下 LCD 的驱动程序,遇到了很多困难,但也有点小小的收获,拿出来晾晾,大家尽管扔砖,小
[单片机]
模数转换器AD7656与ARM控制器LPC2210的接口设计和实现
引言 在电力系统三相信号处理应用中,常需要同时对A、B、C三相电压和电流信号进行数据采集和处理。如三相功率、电能测量及谐波分析等。美国ADI公司的 AD7656是16位6通道同时采样的模/数转换器,内部含有6个16位A/D转换器,具有转换高、速度快、功耗低、输入模拟信号幅度大、信噪比高等特点。Phmps公司出品的LPC2210,是一款工业级的ARM控制器,处理速度快,性能稳定,与AD7656共同组成的6通道数据采集系统能在很大程度上提高系统的信号采集和处理能力。 1 AD7656的特点及工作原理 1.1 AD7656的特点 图1为AD7656的内部功能框图。 其主要特性为: ◆6个16位独立的ADC通
[单片机]
模数<font color='red'>转换器</font>AD7656与ARM控制器LPC2210的接口设计和实现
89C51单片机做示波器,读取波形代码
上两周主要在探索单片机实时采集AD值并用串口发送到电脑端处理。虽然原理比简单,但由于个人理论功底还有所欠缺,再加上前期目标还不清晰,所以花的时间还是有点多。 刚开始在很长一段时间内串口读不到AD采集的电压值,但在单独调试串口时却是好的。经过很长时间的测试才发现串口中断也定时中断同时打开,导致程序跑飞。后来改中断方式为查询方式,避免了这个问题。后来又遇到了串口波特率一致问题。软件问题都一一解决后,终于能读到数据。画出波形: 正弦信号:幅值2V,偏执1V 无论怎么改变采集信号的频率,发现波形还是这样。再三检查程序确认没有问题时仔细阅读AD的芯片资料后,发现手上这款PCF8591芯片内部自带了峰值保持电路,也就是正弦信号理
[单片机]
89C51<font color='red'>单片机</font>做示波器,读取波形代码
MultiMediacard及其与单片机接口解析
内容摘要:MultiMediaCard是Sandisc公司推出的大容量串行Flash存储卡,外形尺寸为32mm%26;#215;24mm%26;#215;1.4mm,质量小于2g,7针引脚,便于开发设计小型的移动数码设备。本文重点介绍此类存储器与PIC单片机的接口,给出实际的电路设计和软件代码示例。 关键词:MultiMediaCard 串行Flash存储卡 PIC单片机 接口 1 概述 Sandisc公司推出的大大容量串行Flash存储器产品——MultiMediaCard(MMC),通常叫作多媒体卡。它的体积比 SmartMedia还要小, 不怕冲击,可反复读写记录30万次,驱动 电压 2.7~3.6V,可变时钟 频率
[单片机]
MultiMediacard及其与<font color='red'>单片机</font>接口解析
STC12C5A60S2单片机的内部构造及功能详细介绍
STC12C5A60S2单片机是一款功能比较强大的单片机,在众多的51系列单片机中,要算国内STC 公司的1T增强系列更具有竞争力,因他不但和8051指令、管脚完全兼容,而且其片内的具有大容量程序存储器且是FLASH工艺的,如STC12C5A60S2单片机内部就自带高达60K FLASH ROM,这种工艺的存储器用户可以用电的方式瞬间擦除、改写。而且STC系列单片机支持串口程序烧写。 1、STC12C5A60S2简介 STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。内部集成MAX
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved