LED灯具调光效果不理想?教你如何改善

最新更新时间:2014-10-24来源: 互联网关键字:LED灯具  调光效果 手机看文章 扫描二维码
随时随地手机看文章

  阻碍LED照明被广泛采用的因素之一,就是它们同早先安装的切相(phase-cut)调光器之间的不良匹配性能。

  根据NEMA(国家电气制造商协会)的数据,仅仅在北美地区,就安装有1.5亿只家用切相调光器—— 一种用于白炽灯光源的器件。白炽灯泡固有的热惰性掩盖了调光器们的那些不受欢迎的特性。相反,LED灯具,特别是其中的供电电路或者说驱动电路,不得不挣扎着应付市场上这些切相调光器的不停变化和不稳定的输出。由此而产生的灯具与灯具之间,乃至调光器与调光器之间的大范围变化,而这些对终端用户来说是不可接受的,尽管通过实现自适应的驱动电路设计可以缓解这个问题。

  当初,切相调光器是作为一种简单、高效而便宜的方法被设计用于白炽灯光源的亮度调节的。它通过限制提供给负载的功率来实现调光,只允许交流电网每个半周在一定百分比的时间处于导通状态。通过改变调光器的位置,就能够改变导通的周期,从而控制施加于负载的功率,最终实现光输出的改变。

  切相调光器

  目前有两种不同类型的切相调光器(图1)。前沿切相调光器延迟过零点之后的触发角(firing angel),将交流电每个半周的初始部分切除,而只让后面的部分导通。后沿调光器工作于相反的方式,在交流电每半周的初始部分导通,而在后面部分截止。前沿调光器仅需使用一个有源器件——三端双向可控硅开关元件——这使得它们的成本非常便宜,并因此而占据了整个北美市场的主导地位。

  导致LED灯具性能的差异化的一个因素就是切相调光器产生的最大和最小触发角存在着很大的不一致。不同的供应商,以及不同的产品型号,其触发角的变动范围都非常大。如此一来,其导通时间和施加给负载的功率也会出现变化。实际上,通过对市售的64只来自不同供应商的调光器的调查,我们发现其触发角的最小值波动范围为17°~72°,而最大触发角的波动范围为104°~179°(图2),——两者都存在一个巨大的跨度。

  下表中显示了来自两家广泛使用的制造商的切相调光器所产生的触发角的特定最大与最小值。所有的可调光LED灯具的电源供电电路,其调光器的导通周期都与LED的工作电流直接相关,并因此而影响着灯具的发光量。假设LED驱动电路具有固定的调光曲线,恰如今天市场上所有驱动电路所实现的那样,那么针对不同的调光器,该驱动电路的性能表现也会不一样。此外,调光曲线上的任何非线性都会加剧调光器之间的性能差异。

  触发角的变动

  在设计切相调光电源电路的时候,制造商必须确定该电源电路在什么样的触发角产生最大和最小的LED工作电流。假如该电路具有一条固定的调光曲线,这就迫使他们要根据性能要求对特定的调光器做出一项或者多项妥协。

  考虑这样一种情况:电源电路的最小调光级为1%输 出电流,对应的触发角为30°,而最大调光级为100%, 对应的触发角为158°,相应的调光曲线示于图3。假如电 源电路工作于表中所示的两只调光器的情况,它就会完美 匹配那只Leviton调光器,在该调光器的最小物理位置达到最小的调光级,而在其最大物理位置达到最大的调光级。

  然而,假如该电路与那只Lutron调光器协同工作,它就达不到最大100%的调光级。它将只能达到最多49%的调光水平,因为该Lutron调光器产生不了宽达158°的触发角。进一步说,它也实现不了1%的最小调光水平,因为该Lutron调光器也实现不了低达30°的触发角。在本例中,它将只能达到1.7%的调光水平。

  另外一种方案是将最小与最大调光水平分别设置成 匹配Lutron调光器的45°和138°的触发角,如图4所示。在这个场景中,驱动器将完美匹配Lutron调光器,但是 如果与Leviton调光器配合使用,依然会存在问题。使用这些条件于该调光曲线,驱动器将达到其所期望的1%的最小调光级,以及100%的最大调光级;但是,这样一来,在调光器的底端会存在着12%的空程,在顶端则存在着16%的空程,在这些区域里,调光器依然可以移动,但是不会产生调光效果。

  一些工业指南,比如照明研究中心(LRC)的 ASSIST (固态照明系统及技术联盟)项目所开发的指导文档,就建议在整个调光范围之内,任何位置的空程范围不要超过10%,而LRC的进一步研究表明,用户发现有空程存在的时候,就会感觉很不舒服。前面的例子就不能满足该建议的要求,不管是在调光行程的底端还是顶端。这个问题,会随着调光器的不同而表现得更严重。针对目前市场上的调光器的相位角范围,既要避免输出水平的改变,又要避免调光器的空程,是不可能仅仅使用一条固定的调光曲线就实现对它们的支持的。

  自适应调光解决方案

  为了消除不同调光器带来的行为上的差异,驱动器必须动态调整其调光曲线,以适配当前使用的调光器的专有特性。智能驱动器能够使用基于软件的学习算法来适配相位角的变化。要支持市面上所有的调光器,智能驱动器需要以一条缺省的调光曲线为基础,根据其所观测到的数据来进行适配。该缺省调光曲线的最大与最小相位角应该居于市面上所有可用调光器的最坏的限制条件之内。将缺省值设置为在95°达到最大调光输出,以及在75°时达到最小的调光输出,就能够满足这个要求(图5a)。然后,当该驱动器工作于某只切相调光器的时候,学习算法就可以监视该调光器产生的相位角,如果相位角超出了当前的限定值,就对该限定值及调光曲线进行相应的调整。

  以上表中的Lutron调光器为例,当该调光器被调节到其最大位置的时候,它会产生一个更宽的高达138°的相位角。驱动器的学习算法发现该相位角大于其先前存储的最大限定值,于是将该限定值和调光曲线进行更新以适配这种情况。当调光器被调节到最小位置的时候,它会产生一个更小的低达45°的相位角,驱动器的学习算法检测到该相位角低于驱动器先前存储的最小限定值,于是对存储的值及调光曲线进行更新,以适配这种情况。

  图5b展示了该算法在完成对Lutron调光器的适配之后的调光曲线及其最大与最小限定值。该图清楚显示了在 调光器的最大位置,驱动器的的调光输出达到了100%且没有任何空程;而在最小位置,驱动器的调光输出达到了1%且没有任何空程。在这个案例中,驱动器完美匹配了与之配合工作的Lutron调光器。

  连续适配

  驱动器可能需要对两个情况进行理想适配以适应不同相位角的情况——安装的时候以及调光器被更换的时候。为了简化安装流程,并避免给用户带来复杂或耗时的学习过程,驱动器的自适应调光算法可以被配置成永远激活状态。通过连续监视输入的相位角,驱动器就能够确定是否需要更新其限定值和调光曲线。一旦它检测到某种需要对最大或最小限定值进行改变的差异值,它就把新检测到的值存储到非易失存储器并重新计算调光曲线。这样一来,终端用户就可以如其所见般操作该调光器,而驱动器将根据其收到的相位角输入信息对调光器进行无缝适配。

  假如上文中的Lutron调光器被替换成了Leviton调光器,该学习过程就会继续进行。当Leviton调光器被移到其最大和最小调光位置的时候,它会分别产生158°和 30°的相位角。驱动器的自适应调光算法检测到这两个新的限定值,对它存储的值和调光曲线进行调整以适配新的情况。图5c显示了在同Leviton调光器协作后修正的限定值和调光曲线。该曲线再一次完美匹配了新调光器的特性,没有任何的空程,并且保持了同样的最大及最小调光水平。

  Light-Based Technologies公司在其Ultra Compatible系列LED驱动器中使用了专有的软件,来实现上述自适应调光算法。这些驱动器确保能够消除调光器之间的任何差异,提供用户所期待的一致的调光性能。

关键字:LED灯具  调光效果 编辑:探路者 引用地址:LED灯具调光效果不理想?教你如何改善

上一篇:LED设计八大经典问答
下一篇:T4、T5、T8LED日光灯管区别

推荐阅读最新更新时间:2023-10-12 22:47

LED灯具主流发展风向标
    如今人们对各种照明原理及其使用环境的深入研究,突破了以往单纯照明、亮化环境的传统理念,极大的丰富了现代灯具、灯饰对照明环境的表现力与美化手段。随着紧凑型光源的发展,各种新技术、新工艺不断采用,镇流器等灯用电器配件小型化,现代灯具正在向小型、实用、多功能方向发展。      紧凑型荧光灯在现代灯具中的应用范围增大。      最初的荧光灯具主要集中在台灯开发方面,现在已逐步扩展到各类照明灯具,各种照明场所及功能性照明灯具的开发上。我们可以作一个简单的归类:小功率紧凑型荧光灯一般用在台灯、格栅灯具中;大功率紧凑型荧光灯一般用在各种道路灯、庭院灯、草坪灯中;其中三管紧凑型荧光灯具大多采用电子镇流器并配以设计独特的反射器,灯具效率较
[电源管理]
LED灯具散热建模仿真关键问题研究
本文综合研究了边界条件设置、热阻计算、热量载荷分析和散热器等仿真建模的关键问题,并与实验室温度测量相结合来验证仿真方法的准确性。结果表明,该方法对室内照明 LED 灯具能进行较为准确的散热分析,仿真温度误差在4℃左右,仿真结果对LED灯具开发设计具有重要参考价值。   0 引言   LED属于半导体发光器件,受目前 LED芯片 的生产制造水平限制,LED高功率产品输入功率仅有约20%~30%转换为光能,剩下的70%左右均转换为热能。结温升高会影响LED的寿命、光效、光色(峰值波长)、色温、配光、可靠性、发光强度、正向电压等,而这些均是影响照明质量的重要因素。   为了控制LED灯具的温升,保证灯具的寿命和可靠性,国内外学者针对
[电源管理]
<font color='red'>LED灯具</font>散热建模仿真关键问题研究
LED灯具寿命和色保持度的指标是很高
LED灯具寿命和色保持度的指标,从目前来看是很高的,实际上很多LED灯具还达不到这个要求,因为LED灯具所涉及的技术问题很多、很复杂,其中主要是系统可靠性问题,包含LED芯片、封装器件、驱动电源模块、散热和灯具的可靠性。要有较好的机械性能和密封性,散热体还要防尘,要求LED灯具的温升应小30℃。LED灯具的设计除了要提高灯具效率、配光要求、外形美观之外,要提高散热水平,采用导热好的材料,有报道称,散热体涂上某些纳米材料,其导热性能增加30%。以下分别对这些问题进行分析: (一)LED灯具可靠性相关内容介绍 在分析LED灯具可靠性之前,先对LED可靠性有关的基本内容作些介绍,将对LED灯具可靠性的深入分析有所帮助。
[电源管理]
温度传感器做LED灯具的过温保护
温度传感器做LED灯具的过温保护 LED照明灯具与传统的照明灯具最大的区别,LED照明灯具是一个完全的电子产品,而传统的照明灯具仅是一个电器产品。因此LED灯具可以很方便地与各种类型的传感器关联,从而实现光控、红外控制等多种自动控制功能。如LED路灯的自动开关,用一个光敏传感器就可简单实现;社区夜间走道和庭院照明,可以用红外传感器采集人类活动信息,自动开闭照明灯具...... LED照明灯具开关自动控制 传感器作为信号采集和机电转换的器件,其机电技术都已相当成熟,近几年MEMS技术兴起又将传感器技术向小型化、智能化、多功能化、低成本化大踏步迈进。光敏传感器、红外传感器等各种类型的传感器都可与LED照明灯具组成一个智能控
[嵌入式]
LED灯具的工业设计战略
在新一轮的工业革命浪潮中, LED 灯具作为固态 照明 产品替代现有的气态照明产品已是大势所趋,并且正在如火如荼地进行替代过程,但是总地来说,这个替代过程还是刚刚开始,使用上百年的白炽灯一族尚在广泛使用,LED灯具普及使用尚需时日,而且目前还存在不少不利因素,例如散热、光效等技术难题,成本价格问题,用户的使用习惯问题,等等。LED灯具制造企业理所当然要 努力解决以上问题,同时,还要对另一个重要问题引起重视,这就是LED灯具的工业设计因素,LED灯具实现了光源的革新,但如何实现材料、结构、外观造型灯方面的配套创新,使得灯具最好地体现光源的效果,更容易为广大用户喜欢接受,这是非常值得关注的课题。在核心技术上,由于众所周知的原因,一般灯
[电源管理]
LED灯具设计的关键问题
要设计产品,首先要确定用谁的led封装结构;接下来考虑怎样适应这些封装形式; 由我们选择的机会不多,光学结构是建立在这些封装之上的;我们很多创意不能很好的发挥。 灯具设计是千变万化的,怎样才可以摆脱这一局面?    1 半导体照明应用中存在的问题   a 散热   b 缺乏标准,产品良莠不齐   c 存在价格与设计品质问题,最终消费者选择led照明,缺乏信心   d 半导体照明在电气设计方面与传统照明有很大差别,传统灯具企业需要经验/技能积累过程   e 大家都看好该市场,但是还没有规模上量   特点:   (1) 通过调整高精度恒流芯片,保证LED亮度、色度的一致性,在
[电源管理]
LED灯具驱动电源设计心得总结
要普及LED灯具,不但需要大幅度降低成本,更需要解决技术性的问题。如何解决能效和可靠性这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED灯具设计的心得。   一、不要使用双极型功率器件    DougBailey指出由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性,因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET器件,MOSFET器件的使用寿命要远远长于双极型器件。
[电源管理]
flos & ron gilad光环LED灯具设计
  如果不是亲眼看到,很难相信灯光也能做得如此迷人,如同光通过编织得到一件艺术品。这是由意大利flos和纽约设计师ron gilad合作设计的灯光作品”wallpiercing”。单个LED灯具被封装在铝制和聚碳酸酯封套中,使得整件设计完好贴合在平面上,彻底消除显眼的配件和安装痕迹。   设计者可以按自己想法将环形灯相连接,DIY创作出定制的拼贴画,并可任意组合成各种尺寸和复杂度的灯光作品,LED灯光之家想参照设计在客厅做发光的背景墙。产品中的LED灯提供了不同颜色和亮度的漫射光线,使用者可以根据灯具所处环境的氛围和风格对灯光效果进行调整。整件设计将在2011年斯德哥尔摩家具展览会上展出。 
[电源管理]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved