如何设计LED标牌和LED矩阵显示屏

最新更新时间:2014-11-09来源: 互联网关键字:LED标牌  LED  矩阵显示屏 手机看文章 扫描二维码
随时随地手机看文章

  引言

  基于LED的标牌和矩阵显示屏为不断增长的室内外应用带来了更多的功能以及绚丽夺目的视觉效果。LED技术的最新发展使人们很难分辨出自己看到的到底是其高质量显示屏的静止画面,还是传统的打印或绘制广告牌。本教程将详细介绍LED显示屏系统的基本技术原理,以及使用分立LED灯泡阵列设计它们需要考虑的设计问题。

  LED 驱动基础

  首先,我们要对比不同的LED驱动电路,以确定最佳方案。

  连接电压源

  众所周知,LED 灯(或二极管)在具有足够正向电压(VF)时开始导通。导通时其正向电流通常会发光。根据这个基本知识可以得出图1a中的第一种选项,不过这样行不通。因为 LED 电流是其电压偏置的指数函数(公式1),LED 灯的光强度对该电压非常敏感。大多数情况下,大电流条件通常会将原本长寿命的LED变成昂贵的闪光灯泡。

  

  下面是图1a行不通的原因所在。在公式1中,IS、RS是常数,取决于LED产品本身,与VT是热电压无关。假设串联电阻RS是理想值零,那么仅0.1V的VF变化就会产生47倍的ILED差异。

  

  例如,20mA的目标LED电流值在其偏置电流出现仅0.1V的差异时就会跳变至1A。即使考虑实际RS值,真实LED器件在具有0.1V偏置差异时仍会出现10至20倍的差异。

  

  图 1.对比三种LED驱动电路

  支持流限电阻器的电压源

  现在我们来看看图1b。添加一个限流电阻器RLIMIT来保护LED灯。由于有限流电阻器,因此该灯不会被烧坏。在视频显示器应用领域,这种方法在控制LED光强度方面仍然不够好。LED曲线和RLIMIT产生的负载曲线可决定其LED电流值。如红色或蓝色标记所示,该LED和电阻器分别存在制造误差造成的正向电压变化及电阻变化。这些误差因素会使LED电流(绿)产生不可忽视的变化。

  恒流源

  图1c采用恒流电路而非电阻器。该恒流驱动器电路可直接将LED电流调节为目标值。无论LED灯在制造过程中会产生多少VF变化,LED都会传导特定的电流值。LED灯的光强度与通过 PN 结点的电荷紧密相关,因此该恒流驱动器是从LED灯获得统一光输出的理想方法。

  此外,我们都知道集成电路(IC)可提供良好的匹配电路对。这也是选择恒流法的另一个优势。图2是LED驱动器的基本输出级结构。市场上很多LED驱动器IC都有参考电流设置端 IREF,该参考电流是镜像到其输出端的恒流。

  

  图 2. LED 驱动器IC的基本输出配置

  图2是该讨论的结果,即LED驱动器的基本输出电路配置。

  色彩驱动

  到目前为止,我们已经能够确定如何驱动单个LED灯了。下一步是为视频显示系统实现全色彩光输出。通过组合光的不同深浅红绿蓝三原色(RGB),任何色彩都可生成。较为熟悉的示例是采用个人计算机(PC)上的色彩选择工具。

  数字或模拟的灰阶控制

  PC 操作系统将三种色彩混合为256个色阶(每阶8个二进制位)或更多,以显示全彩色像素。对于LED显示系统而言,也需要采用相同概念的色阶色彩强度控制,以便在LED驱动器设计中实现色阶控制或灰阶控制。

  首先应决定使用数字控制还是模拟控制。前面已经介绍过,经过 PN 结点的总电荷数可决定光强度,因此数字和模拟方法均可控制光强度。图3是数字和模拟法中的50%灰阶控制。在总体256个色阶的示例中,该50%表明了一个有128个灰阶的目标。

  

  图 3.数字和模拟的50%强度控制

  LED 电流与色彩变化

  这时候,需要考虑电流变化对LED光输出波长值的影响。改变波长就意味着改变人眼看到的色彩。图4是绿色LED灯的实例。通常在业界,510nm 广泛代表绿色。因此,大部分LED灯制造商所设计的LED灯产品在最大额定电流下都具备510nm的波长。在图4中,随着LED电流的升高,波长可达到510nm。获得绿色的最佳方法是尽量使灯的驱动电流接近最大额定值。这也就说明了为什么使用数字控制比使用模拟控制好。

  选择数字控制的另一个优势是便于以数字电路模块的形式对LED驱动器IC实施控制。对于256阶的灰阶控制而言,数字控制的成本比模拟控制低。

  

  图 4.绿色LED电流与波长实例

  这种ON/OFF 数字控制称之为脉宽调制(PWM)控制,或者PWM调光。现将PWM控制开关添加至图2。

  如何构成矩阵或2D图像

  RGB LED灯可平铺构成2维(2D)影像。

  显示系统结构

  RGB LED灯可用于构成正方形的基础结构或模块。它通常包含一块PCB以及一个16×16至64×64的像素阵列,不同的应用有所不同。可将多个模块组合在一起,构成机械系统结构或面板。LED显示系统厂商通常提供各种面板。每个面板都有机械框架,可放置多个模块。它包含一个或多个控制单元,用以提供电源分配、数据接口和处理器。在构建体育场大屏幕或路边广告牌等显示系统的现场,可安装多块面板构成最终显示屏。在施工现场,每块面板的所有数据线和电源线都会集中在中央控制单元。

  

  图 5.LED 显示系统由模块/面板/显示屏组成

  像素间距

  一套LED显示系统包含大量的LED灯和一个大电源。设计系统时需要重点考虑LED灯的密度优化问题。LED 灯的该密度称为每个像素的距离或像素间距。如果像素间距太密,一旦超出了人眼能识别的精度,它就不会改善影像输出质量,而且会增加成本。人眼可识别的两个单光源是在这两点形成1个弧度的1/60(=1 弧分)时。

  

  图 6.人眼可识别的分辨率

  图6是如何计算人眼可分辨像素间距Dpp1。如公式3所示,其中L为视距。

  

  在最佳实践中,DPP1可视为过大,对于高质量视频系统而言三倍Dpp1就够好了。在公式4中,DPP是指导标准。

  

  公式4 的简单记忆方法是:

  所需的像素间距(毫米:mm)=“视距”(米:m)

  例如,5m视距的系统需要5mm像素间距来实现良好分辨率。另一个视觉实例如图7所示,图中展示了过低像素间距如何降低输出影像质量。像素间距为12.5mm 的影像(上)看起来很粗糙,无法近距离辨识。但保持一定的距离观看时影像开始变得清晰,与观看像素间距为5mm的影像(下)类似。这个实例清楚地说明了视距与像素间距的关系。

  

  图 7.不同像素间距与视距的对比

  静态驱动器与时分复用驱动器

  从图2可以看出,LED灯的阴极采用当前市场常见的LED驱动器IC驱动。这里要讨论LED灯的阳极驱动器电路。阴极采用恒流驱动器有优势,阳极希望也只提供足够的电压。但仍需做出如何驱动阳极的重要决定!

  图8 对比了静态阳极驱动器系统与时分复用阳极驱动器系统。静态阳极驱动器配置十分明确:一个LED驱动器IC驱动一个LED。在设计具有大量像素点的系统时,静态阳极驱动器需要大量LED驱动器IC。相反,时分复用阳极驱动器系统让多个LED灯共享一个IC,因而使用的LED驱动器IC数量较少。时分复用驱动器的权衡在于输出LED光强度会因分时而降低。

  在户外显示系统中,需要极强的LED输出来克服太阳光亮度,以便人眼能看清楚影像。在这种户外系统中,更适合选用静态阳极驱动器。另一方面,在室内系统中,时分复用阳极驱动器则是降低系统构建成本的好方法。

  时分复用已经成了当前应用最常用的技术,因此我们将将其用于本文剩余部分讨论的应用中。

  

  图 8.静态阳极驱动器与时分复用阳极驱动器

  如何创建电影/视频影像

  之前我们探讨了如何显示静态影像。如果我们不断变化静态影像,就可将其变为电影或视频。

  帧速率/帧刷新率

  老式模拟电视通常在一秒钟内显示24张不同的静态影像,帧速率为24。

  当模拟电视摄像机拍摄另一个模拟电视屏幕时,可产生由视频影像与黑色条带构成的斑马纹混合画面(图9)。这种现象由同步电视摄像机和电视屏幕扫描率引起。在拍摄LED屏幕的摄像机采用时分复用阳极驱动器时,也会出现相同的问题。应用实例包括使用电视摄像机拍摄背景墙壁上由LED显示器放大演员的舞台影像或者用电视摄像机拍摄体育场中体育赛事比分牌或标牌等。要避免这个问题,LED显示器现在需要比摄像机系统运行得更快,特别是在专用LED显示器市场。

  

  图 9. 电视摄像机拍摄另一个电视屏幕引起的黑色条带

  为满足更快运行这一要求,很多LED显示系统都在一个帧周期内反复显示相同的影像,称为帧刷新率。图10是帧速率与刷新率的关系。只有两张帧影像:A 和 B。每个帧重复“影像 x”两次。因而本实例“帧刷新率”= 2 ד帧速率”。

  

  图 10.帧速率与帧刷新率

  在普通LED显示系统中,帧速率在50Hz至120Hz的范围内,而帧刷新率则介于50Hz至2kHz之间。

  ON/OFF 控制驱动器或 PWM 控制驱动器

  为了满足系统帧速率与刷新率的需求,需要在实施逻辑电路的两种方法中做出选择。第一种是ON/OFF控制驱动器,而第二种则是PWM控制驱动器。

  图11a是采用ON/OFF控制IC的系统,具有每个位对应于一个输出的ON/OFF寄存器。寄存器位的逻辑高可打开对应的输出,而逻辑低则可将其关闭。

  图11b是采用PWM控制IC的系统,具有一个可参考时钟计数器的灰阶参考时钟输入端。另外,该IC还具有一组保存灰阶逻辑代码的寄存器。PWM 比较器可通过计数器和灰阶 (GS)寄存器比较和生成PWM输出模式。

  对于这两种类型的驱动器IC而言,两种工作都是并列执行的:

  - 恒流驱动器模块根据当前显示周期数据的输入驱动其LED灯阵列;

  - 并将下一个显示周期的数据接收在移位寄存器中。

  

  

  图 11.采用ON/OFF控制IC和PWM控制IC的LED显示系统

  总结

  首先介绍单个LED灯的驱动器电路,再讨论详细的LED灯物理特性、显示系统的物理布局与结构以及静态及时分复用控制,进而得出完整的LED驱动器IC结构。

  在第2部分,我们将介绍影像处理控制器IC与LED驱动器IC之间的数据传送,并举出实例。另外还将探讨与LED显示驱动器IC有关的特性主题。

关键字:LED标牌  LED  矩阵显示屏 编辑:探路者 引用地址:如何设计LED标牌和LED矩阵显示屏

上一篇:提高LED灯具散热水平的几点建议
下一篇:基于FPGA的LCD显示远程更新

推荐阅读最新更新时间:2023-10-12 22:48

基于电感升压开关型变换器的LED驱动电路
一、基本电路拓扑与工作原理   基于 电感升压 开关型变换器的 LED驱动 电路广泛应用于电池供电的消费类便携电子设备的背光照明中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率开关MOSFET( VT1)、控制电路、升压二极管(VD1 )和输出电容器(C0)组成,如图1(a )所示。      图1电感升压变换器基本电路及其工作原理图   在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。   当控制器驱动VT1 导通时,VD1截止,L1中的电流不能突变
[电源管理]
基于电感升压开关型变换器的<font color='red'>LED</font>驱动电路
30 W以下功率的低功率LED通用照明应用
近年来,照明已经成为世界各国推动节能环保所瞄准的一个重要领域。据统计,全球每年约有20%的电能用于照明,这些电能中又有约40%用于低效的白炽灯照明。而随LED在光输出性能、成本等几乎各个方面的持续改进,LED通用照明已经成为白炽灯等传统照明的一种极引人注目的替代解决方案。 典型的LED通用照明应用包括电灯泡和荧光灯管替代、嵌灯、街灯及停车灯、工作照明灯(台灯、橱柜内照明)、景观照明、广告牌文字电路、建筑物照明等。LED街灯的功率较高,一般在50 W至300 W之间;LED建筑物及区域照明应用的功率一般在40 W到125 W之间,属于中等功率范围;30 W以下的可统称作低功率LED照明应用,包括特定指向照明,如橱柜内照明、嵌灯
[电源管理]
30 W以下功率的低功率<font color='red'>LED</font>通用照明应用
是时候告别汽车照明离散解决方案了!
各大汽车制造商都在广泛使用发光二极管 (LED) , 除了 传统的前照灯、尾灯、日间行车灯、停车灯和转向灯,以使他们的汽车在市场上脱颖而出 以外 。目前,示廓灯、车牌、品牌标志、迎宾灯和环境灯上都出现了 LED 的身影。 驱动 这些 LED 发光,必须考虑以下问题: 电流的精度, LED 的同质性 会有 显著改进 ; LED 的亮度变化,要 求 具有某种调光功能; LED 开路 / 短路的诊断与保护,以及热防护,因为安全问题一直是汽车关注的焦点。 如何提高能效。 传统意义上, LED 都是由离散解决方案驱动的。图 1 显示了三种典型的方案:运算放大器 (op amp) (方案 1 )、 直接与汽车电池连接
[汽车电子]
是时候告别汽车照明离散解决方案了!
评价光源显色性TM-30与CRI的比较
美国能源部表示,光源显色能力的新评价方法TM-30要优于CRI(显色指数)。 美国能源部的科学家们对TM-30与CRI进行了比较,表示由北美照明工程协会(IES)在2015年发布的TM-30“在多个光源上显色更加准确”。 ▲ TM-30检测结果的图形说明,光源与参考源的目测指示如何存在区别 国际照明委员会在上个世纪30年代提出了CRI,长期以来他们也认识到用CRI来评价LED光源的显色性存在不足,特别是在准确表示光源如何呈现深红色等饱和色彩方面。但他们同时也反对像TM-30这样的评价方法。 一些专家认为,行业应该转向TM-30与CRI双度量标准,既包括独立的色彩保真度,也包括色域要素。但是反对者认为,TM-30
[电源管理]
LED线性驱动和开关型驱动
驱动方案一般来说有两种: 线性驱动和开关型驱动。   线性驱动应用是一种最为简单和最为直接的驱动应用方式。在照明级白光LED应用中,虽然存在着效率低、调节性差等问题,但是由于其电路简单、体积小巧,能满足一些特定的场合应用较多。   开关型驱动可以获得良好的电流控制精度和较高的总体效率,应用方式主要分为降压式和升压式两大类。降压式开关驱动是针对电源电压高于led的端电压或者是多个LED采用并联驱动情况下的应用。升压式开关驱动是针对电源电压低于LED的端电压或者是多个LED采用串联驱动情况下的应用。   一般认为,隔离型驱动安全但效率较低,非隔离型驱动效率较高,应按实际使用的要求来选。  目前设计一般的基本LED
[电源管理]
韩厂积极布局LED专利 带动韩国竞争力提升
  新闻事件: •  韩厂积极布局LED专利,带动韩国竞争力提升    行业影响: •  加速与海外企业在LED相关专利展开合作 •  韩厂积极布局LED专利将会大大带动韩国竞争力的提升    有鉴于单以专利数量评定竞争力较难维持客观性,韩国未来技术研究中心(Emerging Technology Research Center;ETRC)与韩国专利公司ED Research合作,制定出兼顾LED专利数量与质量的绿色能源技术指数(Green Energy Technology Index;GETI),用以评比全球绿能产业地区及企业专利竞争力。    参照ETRC与ED R
[电源管理]
韩厂积极布局<font color='red'>LED</font>专利 带动韩国竞争力提升
恒定电流LED驱动器目前以适合边缘照明的低矮型DFN封装供应
【2018 年 1 月 30 日美国德州普拉诺讯】因应具备高效率及超低 EMI 的小型 LED 照明设备需求持续成长,Diodes 公司为此扩展广受欢迎的 BCR420U 及 BCR421U 线性 LED 驱动器系列,纳入采用超低矮型 DFN2020 封装的 BCR420UFD 及 BCR421UFD 装置,非常适合 12V 及 24V LED 边缘照明应用。 LED 照明的主要效益为寿命更长及效率更高,代表更多变且侵入程度较低的解决方案需求持续增加,其中包括由边缘而非以垂直方式发光的灯具。为了因应这项需求,制造商寻求解决方案支持更薄的整体外型。DFN2020 封装高度仅 0.6mm,是边缘照明的不二选择。 新装置和 BC
[半导体设计/制造]
STM32基础3--GPIO控制(LED&KEY)
在SMT2基础1,生成文件后。其实就可以调用HAL库中的 stm32f4xx_hal_gpio.h 的GPIO控制函数,对GPIO进行操控了。 HAL_GPIO_ReadPin 该函数,对引脚的电平的读取,也就是输入电平,返回值是电平的状态。GPIO_PIN_RESET 为低电平,GPIO_PIN_SET为高电平。 typedef enum { GPIO_PIN_RESET = 0, GPIO_PIN_SET }GPIO_PinState; 函数第1个形参是GPIO的分组,填入GPIO组的基地址即可 #define GPIOA ((GPIO_TypeDef *) GPIOA_BASE) #define
[单片机]
STM32基础3--GPIO控制(<font color='red'>LED</font>&KEY)
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved