1、什么是LED驱动电源
LED驱动电源把电源供应转换为特定的电压电流以驱动led发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。
2、LED驱动电源的特点
(1)高可靠性
特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。
(2) 高效率
LED是节能产品,驱动电源的效率要高。对于电源安装在灯具内的结散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。
(3)高功率因素
功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上使用照明量大,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。
(4)驱动方式
现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电也就是“中科慧宝“改采用的驱动方式,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题。这两种形式,在一段时间内并存。多路恒流输出供电方式,在成本和性能方面会较好。也许是以后的主流方向。
(5)浪涌保护
LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。有些LED灯装在户外,如LED路灯。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此分析“中科慧宝“的驱动电源在浪涌保护方面应该有一定的欠缺,而至于电源及灯具频繁更换,LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力。
(6)保护功能
电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高;要符合安规和电磁兼容的要求。
3、按驱动方式分类
(1)恒流式
恒流驱动电路输出的电流是恒定的,而输出的直流电压却随着负载阻值的大小不同在一定范围内变化,负载阻值小,输出电压就低,负载阻值越大,输出电压也就越高;
恒流电路不怕负载短路,但严禁负载完全开路;
恒流驱动电路驱动LED是较为理想的,但相对而言价格较高;应注意所使用最大承受电流及电压值,它限制了LED的使用数量。
(2)稳压式
当稳压电路中的各项参数确定以后,输出的电压是固定的,而输出的电流却随着负载的增减而变化;
稳压电路不怕负载开路,但严禁负载完全短路;
以稳压驱动电路驱动LED,每串需要加上合适的电阻方可使每串LED显示亮度平均;
亮度会受整流而来的电压变化影响。
4、整体恒流和逐路恒流工作方式优缺点
与整体恒流相较,逐路恒流虽然缺点比较多,成本也比较高。但是它能真正的起到保护LED和延长LED的寿命,所以逐路恒流才是未来的趋势。
5、LED电源的不足
LED驱动电源目前存在不足的原因:
生产LED照明及相关产品的公司的技术人员对开关电源的了解不够,做出的电源是可以正常工作,但一些关键性的评估及电磁兼容的考虑不够,还是有一定得隐患;
大部分LED电源生产企业都是从普通的开关电源转型过来做LED电源,对LED的特点及使用认识还不够;
目前关于LED的标准几乎没有,大部分都是参考开关电源和电子整流器的标准;
现在大部分LED电源没有统一,所以量大部分都比较小。采购量小,价格就偏高,而且元器件供应商也不太配合;
LED电源的稳定性:宽电压输入,高温和低温工作,过温、过压保护等问题都没有一一解决;
驱动电路整体寿命,尤其是关键器件如:电容在高温下的寿命直接影响到电源的寿命;
上一篇:LED灯珠连接形式,LED发光模块常见故障解决
下一篇:三星打造第七代超高像素密度OLED屏
推荐阅读最新更新时间:2023-10-12 22:58
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 有奖直播|安森美先进的封装和驱动技术助力碳化硅能源应用
- ADI有奖下载活动之17:变频驱动及电源设计中的隔离技术
- 【有奖知识问答】光电子,点亮梦想!
- 带上速度与激情,晒出你的TI WEBENCH 得意之作!
- 绝地求生,集齐4样必然吃鸡!览TI汽车技术方案 赢小礼品
- 下载有礼:2017年泰克亚太专家大讲堂第四期: 如何应对新型半导体材料表征测试挑战
- 【已结束】 Qorvo、村田、NI直播【UWB最新技术、方案、市场、应用解析】(13:30开始入场)
- 有奖活动“庖丁”解智能睡眠监测仪,一波“水军”来围观
- 电感知识大考:遇到这些问题怎么办?|“MPS电感探索季:发现小且不凡的秘密!”第一站
- 帮助他人,成就自己:EEWORLD月度问答榜(第6期)