基于MAX1968的LD自动温度控制系统设计

最新更新时间:2007-08-14来源: 电子工程师关键字:漂移  制冷  激光  算法 手机看文章 扫描二维码
随时随地手机看文章

引 言

LD(激光二极管)由于其波长范围宽、制作简单、成本低、易于大量生产,而且体积小、重量轻、寿命长,因而品种发展快,目前已超过300种,应用范围覆盖了整个光电子学领域,成为当今光电子科学的核心技术,广泛应用于激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等领域,并形成了广阔的市场。

LD缺点是输出特性受温度影响很大,见图1。


随着温度的升高,需要有更多的载流子注入来维持所需的粒子数反转,LD的阈值电流升高,这会导致LD的能量转化效率降低,将电能转换为热能,发射波长也随着温度的变化发生漂移。如果LD不能快速有效地制冷,则不仪会影响其输出特性,甚至会损坏LD。

为了保证LD有较长的工作寿命,必须采取ATC(自动温度控制)措施,通过控制LD管芯温度来维持LD正常工作的温度。

一般ATC是采用半导体TEC(热电制冷器)。TEC是一种没有运动部分的小型热泵,常被运用于空间有限和高可靠性的场合。TEC的功能实现取决于供电电流的方向,通过改变电流方向实现制热或者制冷。本文介绍的芯片MAX1968,是用来控制TEC实现LD的ATC。

1 LD热电温度控制原理

LD温度控制的基本原理是:温度传感器实时地测量安放在TEC冷端的激光管温度,期望的工作温度由设定点的电压来表示,它与温度传感器产生的表示LD实际温度的电压通过运放进行比较,产生一个偏差电压,此信号经过相应的硬件和控制算法处理后,输出一定的电压经过驱动电路送给TEC模块,TEC根据流过电流的方向,对LD进行制冷或加热,使得LD稳定在所要求的温度值。LD的温度控制系统必须满足精度高,响应速度快、稳定性好的要求,而且要能实现双向控制,以适应外界温度变化和LD本身工作条件的不确定性。同时,还要考虑到LD的保护问题。

TEC控制器按输出的工作模式可分成线性模式和开关模式。传统LD的热电温度控制大多采用线性模式的TEC控制器,一个简单的线性驱动TEC电路由两个推挽功率三极管构成,虽然具有电流纹波小且容易设计和制造的优点,但功率效率低、控制精度不高,电路集成度较低,而且存在温度控制“死区”问题。

本文介绍的MAX1968是高度集成、高性价比、高效率的开关型TEC模块驱动器,采用直接的电流控制。

2 MAX1968功能及其特点

MAX1968是一款适用于Peltier TEC模块的开关型驱动芯片,工作于单电源,能够提供±3 A双极性输出,其功能框图如图2所示。

MAX1968主要由两个开关型同步降压稳压器组成,100%的占窄比实现了低压差操作。在两个同步降压稳压器输出端配有高效MOSFET,由LX1、LX2引出,经过LC滤波驱动TEC。两个稳压器同时工作产生一个差动电压,直接控制TEC电流,实现TEC电流的双向控制,双极性工作避免了线性驱动所存在的“死区”问题,以及轻载电流时的非线性问题,能够实现无“死区”温度控制。外部控制电路的输出电压加在TEC电流控制输入端CTL1,直接设置TEC电流。一般TEC+接OS2,TEC-接OS1,OS1和OS2不是功率输出,而是用来感测通过TEC的电流,流过TEC的电流由下式确定:

式中:RSENSE为TEC电流的感应电阻;VCTL1为外部控制电路的输出电压;VREF为参考电压(1.5 V)。

假设正向电流为加热,则VCTL1>1.5 V为加热,电流的流向从OS2到OS1,OS1、OS2、CS这3个引脚的电压关系为:VOS2>VOS1>VCS,反之则制冷。

开关稳压器是按周期运作的,以把功率传输到一个输出端,这种转换方法会在基频及谐波上产生很大的噪声分量,但是在MAX1968中是相位转换并提供互补同相工作周期,所以纹波波形大大减小,抑制了纹波电流和电气噪声进入TEC模块,进而影响LD工作性能。FREQ用来设置内部振荡器的开关频率,当FREQ接地频率为500 kHz,FREQ接电源频率为1 MHz。

MAX1968片内带有的MOSFET驱动器,减少了外部元件,芯片工作在较高的开关频率下,可以用更小的电感和电容,从而减少PCB(印制电路板)的面积、降低成本。

为了确保电流控制环的稳定,在COMP端接一补偿电容,此电容的值可由下式确定:

式中:f为电流控制环的频率,一般不大于LX1端的滤波谐振频率;gm为环的跨导,典型值为100μA/V;RTEC为TEC阻抗。

将SHDN引脚置低,MAX1968还可以工作在省电模式。

芯片还提供了一系列的保护和监测功能:

a) 限制流过TEC最大的正向和反向电流,而且是独立控制的。可根据使用的TEC在REF和GND之间通过分压电阻,在引脚MAXIP和MAXIN端设置。

b) ITEC为状态输出,用以监测TEC的电流,是通过CS与OS1之间的电流感应电阻取样,此输出电压与流过TEC的电流成正比。

c) TEC电压限制功能,MAX1968为TEC提供了最大压差控制,在REF和GND之间通过分压电阻设置VMAx,VMAx在0~1.5 V内变化,而通过TEC的电压为VMAX的4倍。

d) 模拟控制信号直接精确地设置TEC电流,消除了TEC中的浪涌电流。

3 MAX1968应用电路设计方案

要保证LD正常工作,首先要确定LD的正常工作温度。LD现在一般都做成内带背光检测光敏二极管,TEC和温度传感器的LD组件其半导体制冷器和温度传感器都紧贴在LD的管芯上,这样制冷效果很好,而且温度传感器检测到的温度能正确地反应LD的工作温度。MAX1968是一个TEC控制器,用于设定和稳定TEC的温度。每个加载在MAX1968电流控制输入端的电压对应一个目标温度设定点。适当的电流通过TEC将驱动TEC对LD供热或是制冷。LD的温度由温度传感器来测量并反馈给MAX1968,用于调整系统回路和驱动TEC工作。TEC控制器为了完成此工作,需要一个精密的输入放大器,用以准确测量目标温度和LD实际温度之间的差别;需要一个补偿放大器,用以优化TEC对温度间隔的反应。MAX1968能高效率工作以减小热量,而且体积小,系统外部元件少,所以可广泛应用于激光器、各种光电仪器和光通信、自动测试设备和生物技术实验室没备等ATC系统。图3为利用MAX1968设计LD的温度控制系统。

系统中主控回路采用负反馈,将温度传感器输出的电压与给定电压比较,所得误差值经放大和一定的控制电路或控制算法后,送入MAX1968,以控制TEC上的电压、电流的大小和方向,进而实现制冷或制热。

下面简单介绍LD温度控制系统中有关温度传感器、给定温度值等部分的选择方案。

3.1 温度传感器的选择

温度传感器的选择至少要考虑4方面因素:线性度、温度范围、灵敏性以及其大小。常用的温度传感器有负温度系数的热敏电阻、RTD(电阻温度检测器,包括铂电阻、铜电阻等)、集成温度传感器(如LM335、AD590或AD592等),它们的有关参数比较见表1。

最常用的是热敏电阻,其灵敏度高,体积小,价格低,但是其阻值与温度呈非线性关系,所以在应用中通常要进行线性化处理。RTD的阻值随着温度的变化线性增加,但其灵敏性较差,一般用在稳定性要求不高的场合。LM335、AD590在整个温度范围内都具有很好的线性,而且灵敏度很高,LM335是电压输出型,温度每变化1 K,其电压改变10 mV;AD590是电流输出型,温度每变化1 K,其电流变化1 mA。它们的温度稳定性可达到0.01℃,在LD温度控制系统中应用也很广泛。

3.2 给定温度值的设定

采用电阻分压器直接设定温度值,其电路简单,操作方便,但调节比较麻烦,而且精度不高。

利用单片机设定相对某一温度的给定电压数字量,经D/A转换器芯片(如MAX5144)转换为模拟给定值。这种方法电路较复杂,但可通过程序直接将给定值设定在期望值附近,数字调节的精度很高,而且单片机还可应用于控制电路后续的处理和显示电路中。

3.3 控制方法

温度传感器所提供的反馈信号与设定的温度值比较后得到的误差项经过放大处理送给控制电路。最常用的控制电路是由分立元件所构成的模拟PID,也可以是数字PID控制,但是有一点要注意,数字PID容易在系统引入噪声,需要进行适当处理,否则会影响系统的性能。除了上面两种控制方法,还有一种较为常用的方法就是在系统中利用单片机作为微控制器,通过A/D、D/A转换和PID算法,输出模拟量给MAX1968的CTL1,以驱动TEC实现对LD的加热或制冷,软硬件结合,可以提高整个系统的稳定性和精度。

3.4 其他注意事项

元器件选定后构建LD温度控制系统最重要的工作就是机械安装。如果热沉不合适或者器件之间的热传导很差,不仅会使得系统性能下降,甚至可能会导致器件的损坏。

从概念上说,热沉的作用很简单:提供一个恒温表面,通常接近室温。热沉的性能将影响系统最大温度范围和温度稳定性。为了有效地散热,热沉最好是带有翅状的突起,热沉表面积越大,热量消散越快。如果热沉设计不好,系统会陷入热量失控的恶性循环,即热沉不能及时将泵浦进去的热量转移走,则TEC冷端的温度会升高,传感器感测到这个温升后,控制器将增加输出电流以补偿温度的升高,而随着电流的增加又泵浦更多的热量进入热沉,进一步升高TEC冷端的温度。这样不断循环下去直到到达电流的极限值,这时系统将不再受控,激光器也无法稳定在设定的温度值。所以热沉应能及时将激光器和TEC冷端所产生的热量消散掉。

TEC模块安装到热沉中有不同的方法,对具体的TEC,制造商会推荐适当的安装方式,为实现优化温度控制,从待冷却(或加热)的器件到TEC表面的热通路应有高的热传导率和短的物理长度,温度传感器也尽可能靠近激光器以提高测量准确度。同时,还要尽量减小辐射和对流所带来的损失。

4 结束语

本文介绍TEC驱动芯片MAX1968的控制原理及其特点,并给出了该芯片的应用设计方案,同时讨论了构成系统的各部件选择方案或原则,对不同的LD和TEC只要恰当地选择外围器件,用MAX1968构建的温度控制系统可以快速稳定地达到所设定的温度值,稳定性可达到0.01℃。

关键字:漂移  制冷  激光  算法 编辑: 引用地址:基于MAX1968的LD自动温度控制系统设计

上一篇:手机和数码相机中的背光和闪光灯电路
下一篇:提供低成本模/数转换并驱动七段显示器的微控制器

推荐阅读最新更新时间:2023-10-18 14:39

加拿大研制成功“可涂抹”激光,力图解除芯片互连瓶颈
多伦多大学电气和计算机工程系的研究人员日前研制出一种据称能解决微芯片互连瓶颈的激光。 科学家们认为,该激光将令采用红外光在芯片中形成互连成为可能。这将有助于消除一些业内的忧虑,即当前一代的微芯片将在2010年左右达到实际的能力极限。 这种激光不是传统意义上的激光,而是采用胶状量子点形式,据研究人员称这是一种纳米规模的半导体微粒,悬浮在溶剂中。 负责加拿大纳米技术研究的Ted Sargent教授表示,“我们制成了可涂抹到其它材料上的激光,这是首个可涂抹半导体激光,生成不可见光,通过光纤携带信息。红外线在未来有望被用于连接硅计算机芯片上的微处理器。” 介绍该
[新品]
基于AT89C51单片机的激光共聚焦显微镜的扫描控制的实现
作为一种具有较高横向分辨率和纵向分辨率的显微仪器,激光共聚焦扫描显微镜在各个领域有较大发展 文中介绍了激光共聚焦光学扫描的非线性问题,通过选取合适的振镜以及驱动控制系统消除非线性,最后完成扫描驱动系统的软件设计。 通过光学特性在生物组织病变前后所体现出的特征变化米检测并判断生物组织发生病变种类以及病变程度是医学界一个研究热点。激光共聚焦扫描显微镜不仅具有较高的平面分辨率,而且具有较高的深度分辨率,使其能够对佯品进行光学断层扫捕成像。 1 共聚焦扫描显微镜原理及系统结构 激光共焦扫描显微成像技术是采用共轭焦点技术,如图1所示。其工作原理为激光光源发出的激光通过准直系统入射到两向色镜上,经过扫描系统入射到扫捕透镜和透镜组上
[单片机]
基于AT89C51单片机的<font color='red'>激光</font>共聚焦显微镜的扫描控制的实现
“V – Hackathon”伟世通杯自动驾驶算法竞赛圆满落幕
由全球汽车座舱电子技术领导者伟世通和中国顶尖高校--同济大学汽车学院共同举办的“V – Hackathon”伟世通杯自动驾驶算法竞赛颁奖典礼在沪圆满举办。此次算法大赛历时3个多月,面向同济大学所有专业和年级的学生,以伟世通自动驾驶平台的算法开发环境DriveCore™ Studio为平台,在高速公路自动驾驶环境下对车辆检测算法开发,受到在校学生的广泛关注及积极参与。 完善评估机制 赛制公平公正 本次颁奖典礼在同济大学汽车学院举办,伟世通自动驾驶团队的专家及同济大学汽车学院领导均亲临现场为所有报名参赛学生进行编程培训,提供产品技术讲解及实际操作现场指导,并为获奖学生颁奖。获奖学生不仅可获最高3万元奖励,还能获得优先进
[物联网]
“V – Hackathon”伟世通杯自动驾驶<font color='red'>算法</font>竞赛圆满落幕
“激”不可失:激光技术发展带动制造工艺革新
激光技术发展带动制造工艺革新,中国正阔步进入“光加工”时代 激光被誉为“最快的刀、最准的尺、最亮的光”,媲美核能、计算机和半导体。激光加工以效率高、精密度高、不易受材料限制、具备柔性等优势,逐步替代传统加工制造、如焊接、切割、钻孔等,深化新领域应用、如3D打印、脆性材料异形加工、汽车轻量化、激光熔覆、表面处理等。近年来中国激光加工技术快速发展,带动新兴领域和传统制造工艺革新,中国继欧美日韩之后正阔步进入“光”加工时代。 光纤激光器成主流,亚太地区将成全球工业用激光产业最重要市场 根据LMR统计,2017年全球激光器销售增长18.2%,其中工业用激光器增长26.1%;工业用光纤激光器因其结构紧凑、稳定可靠、光电转换效率高等销售增长3
[嵌入式]
先进的大尺寸测量技术--无导轨激光干涉仪
随着航空航天、重型机械、发电设备、船舶工业的发展,对大尺寸测量的要求越来越高。一些精密配合的大型零部件,尺寸达到十几米甚至几十米,精度要求达到IT7以上。如何测量这些零部件长期以来一直是困扰计量工作者的技术难题。目前实际应用的测量手段仍以外径千分尺、内径测杆等传统测量工具为主,远远不能满足需求。清华大学曾研制出一套很好的对准方法,与激光干涉仪相结合,用于测量大尺寸可达到很高的精度,但该方法必须使用高精度导向导轨,限制了在生产、安装现场的使用。因此,开发高精度、无导轨大尺寸测量技术,一直是长度计量领域的一个重要课题。 激光技术的快速发展为大尺寸精密测量开拓了崭新的领域。近二十年来,出现了多种无导轨大尺寸测量方法,其中,受到广泛关注的
[测试测量]
Velodyne与尼康合作 大规模生产体积小成本低的激光雷达
据外媒报道, Velodyne公司宣布与尼康公司达成协议。根据协议,尼康仙台公司(尼康的子公司)将为Velodyne生产激光雷达传感器。尼康希望在2019年下半年开始量产。此次合作的重点是将尼康的光学和精密技术与Velodyne的激光雷达传感器相结合,帮助Velodyne扩大在全球激光雷达传感器市场的份额。 (图片来源:Velodyne Lidar, Inc. 官网) 2005年,Velodyne的创始人兼首席执行官David Hall发明了实时环绕视图激光雷达系统,彻底改变了人们对自动驾驶汽车、地图和机器人的看法。Velodyne为谷歌早期的自动驾驶汽车开发提供了这种激光雷达。然而这些早期设备体积庞大,价格昂贵。
[汽车电子]
Velodyne与尼康合作 大规模生产体积小成本低的<font color='red'>激光</font>雷达
相位干涉仪测向算法及其在TMS320C6711上的实现
摘要:对实施被动无源测向定位的主要工具之一的相位干涉仪进行了较为详细和系统的研究,给出了一维相位干涉仪的基本关系式,分析了五通道相位干涉仪测向定位算法及其性能指标?熏对解相位模糊问题进行了探讨。最后,在高速浮点数字信号处理器TMS320C6711系统上实现了五通道相位干涉仪测向定位算法,达到了性能指标及实时实现。 关键词:相位干涉仪 测向定位 相位模糊 定位误差 实时处理 相位干涉仪测向技术广泛应用于天文、雷达、声纳等领域。将干涉仪原理用于无线电测向始于上世纪五十年代和六十年代,随着数字信号处理器的出现,通过数字信号处理器来实现高精度实时测向成为可能。 本文在对一维和二维相位干涉仪进行研究的基础上给出了五通道相位干涉仪的基本
[应用]
ARM内核目标系统中的代码运行时间测试
在 ARM 系统中,有时需要精确的时间测量。通常 , 取时间的 C 函数(如 gettime() 等)不仅通用性差(必须包含头文件 DOS.H ,且不支持 Unix 、 Linux 和标准 C ),明显不适用于 ARM 系统 ;更成问题的是,其最短时间只能到 10-2 秒级,不能提供更短的时间分度。根本原因在于: 这类函数是基于系统实时时钟( RTC )的,而 RTC 通常采用标准化钟表晶振,频率只有 32.768 kHz 而已 。 然而很多应用涉及 μs 级的时间计量,这是标准化了的 RTC 以及基于它的时间函数所无能为力的。笔者在移植 DES 算法到 ARM 系统的实验过程中,便遇到过要定量评估加密算
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved