一、引言
倾角传感器是测量关于水平面的倾斜角的装置,在土木建筑、水文地质、兵器、航空航天、生物医学等工程技术领域有着广泛的用途。倾角传感器种类繁多,按照其工作原理可以分为“固体摆”式,“液体摆”式,“气体摆”式三种倾角传感器。对于固体摆式倾角传感器的研究已经比较成熟,且应用广泛,但其易受外界干扰,如机械振动冲击;而液体摆式倾角传感器具有灵敏度高、耐腐蚀、耐潮湿等特点,但其致命的缺点是温度变化会严重影响其工作特性,从而限制了液体摆式倾角传感器的发展和应用;气体摆式倾角传感器结构简单,抗振动和抗冲击能力强,但其受环境温度影响较大,测试精度不高。总之,现有的倾角传感器的精度需要较高的成本来提高,并存在零位偏差,时间漂移和温度漂移等问题。
针对上述问题本文设计了一种基于自动调零理论的自动调零伺服倾角传感器,其基本思想源于木匠和建筑者使用的利用水泡尺旋转180°找平的古老方法,并采用步进电机及单片机控制技术设计和实现。这种自动调零伺服倾角传感器能很好的解决零位偏差,时间漂移和温度漂移等问题,使倾角传感器的性能得到了提高,具有非常重要的应用价值。
二、理论基础
自动调零伺服倾角传感器是设计用来校正各种来源的零位偏差和漂移。其基本思想来源于木匠和建筑者使用的利用水泡尺在被测物体表面旋转180º来找平的古老方法。如果水泡显示了相同的结果就表示工作正常,否则就指示一个等于水泡顶点位置差额的一半的错误。在本文的应用中,伺服倾角传感器位于一个输入轴IA平行于其表面的旋转圆盘上,当要执行偏移校正操作时可以直接旋转180º到圆盘的相反位置上,如图1所示。 图1伺服倾角计的零位偏差不依赖于传感器的位置。因此,当附于水平旋转圆盘上的传感器转到两个不同位置时,其输出将不会改变。
倾角传感器在零输入(倾角传感器的底座位于绝对水平的表面上)时的输出由两部分组成:
(1)偏移误差VB定义为不依赖于倾角传感器位置的输出。
(2)未对准误差角e主要是由于倾角传感器的底座没有与测量轴线绝对平行而造成的。这样就引起了一个与未对准角度成比例的输出电压Ve(对于很小的角度来说,sine≈e)。
如果图1中的旋转底座在一个绝对水平的平面上,则很明显在两个位置上倾角传感器的偏移误差输出VB和未对准误差输出Ve的输出和为:
Vo=VB+Ve。(1)
假设旋转底座相对于Y轴倾斜了角度φ,则分析过程如下,如图2所示。
很明显图2所示的旋转传感器时,角度φ在这两个位置是相同的。显然输入轴线的方向是相反的,这样输出电压的Vφ极性也相反。在位置1和位置2电压输出是重叠的:
V1=Vo+Vφ=VB+Ve+Vφ(2)
V2=Vo-Vφ=VB+Ve-Vφ(3)
最后,位置1和位置2的输出相减(V1-V2=2Vφ)即可得到结果: 一般来说,从等式中可以看出偏移误差和未对准误差是可以完全消除,从而可以得到真实的角度。事实上,这就是自动调零的作用。要把这些理论应用于实践,以下的基本条件必须满足:
(1)在位置2时的旋转圆盘的表面必须与位置1的表面平行。
(2)因为倾角传感器事实上是一个加速度计,所以在执行误差校正操作时仪器必须静止,而且要尽量避免震动。
(3)在测量位置的读数应该在倾角传感器的输出达到平衡状态时读取。
三、系统工作原理和结构
根据上面提出的自动调零的理论基础,要实现倾角传感器的自动调零,倾角传感器需要精确旋转180º。经过对各种微电机的比较,选用易于进行精确控制的步进电机来实现平台的旋转,然后将倾角传感器精确地安装在此平台上。倾角传感器在两个相反位置上的读数需要用足够位数、精度和响应速度的A/D转换器进行转换,最后利用单片机存储和计算最终结果。其数字输出结果通过RS-232或者其他形式进行输出,如图3所示。
四、试验结果
1、温度漂移试验
经过对倾角传感器自动调零原理的研究,设计并实现了自动调零伺服倾角传感器样机。为了验证自动调零伺服倾角传感器的自动调零和消除漂移特性,对此倾角传感器进行高低温试验。其温度试验结果如表1所示,其中V0和V180是内部倾角传感器在自动调零校正操作时在两个测量位置直接读取的,而Vout是调零校正后的计算结果(下同)。 然后对结果进行修正,用于对数据进行分析,修正后的结果如表2所示。可以得到温度变化-输出变化特性图,如图4所示。可以看出,在低温-40℃到高温60℃的温度范围内,内部倾角传感器的输出V0具有最大为0.135V的温度灵敏性。而当经过偏移校正后,倾角传感器的输出Vout具有最大为0.01V的温度灵敏性。也就是说此倾角传感器的零位温度系数小于0.0001°/℃,其调零精度达到0.01°,达到了自动调零的目的,能够满足测试设备的要求。
2.零位重复性试验
零位重复性是指倾角传感器偏离零位后再恢复至零位时倾角的变化值。其数据记录结果如表3所示。对数据记录分析可知,自动调零伺服倾角传感器的零位重复性为0.001°。
3.误差分析试验
常温20℃,在-10°~10°范围内对倾角传感器进行测试,分别记录V0、V180和Vout。根据测的数据可以得到此倾角传感器的在20℃时的线性图如图5。 根据以上测得的数据可以计算出此倾角传感器输出Vout在全量程范围内的非线性误差为0.02°,能够满足测试设备的要求。
4.振动试验
将倾角传感器放在振动台上进行振动试验,振动试验的技术条件如表4所示。记录振动试验前后倾角传感器的零位输出V0、V180和Vout。其试验数据如表5所示。
经过对以上数据的分析,画出Vout在振动前后的对比图如图6所示。从图中可以看出自动调零伺服倾角传感器具有良好的抗振动和抗冲击性能,能够满足测试设备的要求。
5.连续工作试验
连续工作试验是指将自动调零伺服倾角传感器通电使之连续工作24小时,并在每隔1小时时记录其数据输出V0、V180和Vout的值。根据连续工作试验记录可以画出其连续工作的输出变化图,如图7所示。 五.试验结果
经过对自动调零伺服倾角传感器样机进行试验,最终测得其技术参数如下:
六.结束语
零位偏差和漂移是所有传感器都待解决的技术难题,本文通过研究自动调零的模型和方法及补偿量的算法,建立一套倾角传感器自动调零的理论和方法,设计实现了自动调零伺服倾角传感器样机,经过试验证明其具有良好的自动调零特性并能够消除漂移问题,具有非常重要的应用价值。
关键字:自动调零 伺服 倾角传感器 零位偏差 漂移
编辑:神话 引用地址:自动调零伺服倾角传感器的设计与实现
倾角传感器是测量关于水平面的倾斜角的装置,在土木建筑、水文地质、兵器、航空航天、生物医学等工程技术领域有着广泛的用途。倾角传感器种类繁多,按照其工作原理可以分为“固体摆”式,“液体摆”式,“气体摆”式三种倾角传感器。对于固体摆式倾角传感器的研究已经比较成熟,且应用广泛,但其易受外界干扰,如机械振动冲击;而液体摆式倾角传感器具有灵敏度高、耐腐蚀、耐潮湿等特点,但其致命的缺点是温度变化会严重影响其工作特性,从而限制了液体摆式倾角传感器的发展和应用;气体摆式倾角传感器结构简单,抗振动和抗冲击能力强,但其受环境温度影响较大,测试精度不高。总之,现有的倾角传感器的精度需要较高的成本来提高,并存在零位偏差,时间漂移和温度漂移等问题。
针对上述问题本文设计了一种基于自动调零理论的自动调零伺服倾角传感器,其基本思想源于木匠和建筑者使用的利用水泡尺旋转180°找平的古老方法,并采用步进电机及单片机控制技术设计和实现。这种自动调零伺服倾角传感器能很好的解决零位偏差,时间漂移和温度漂移等问题,使倾角传感器的性能得到了提高,具有非常重要的应用价值。
二、理论基础
自动调零伺服倾角传感器是设计用来校正各种来源的零位偏差和漂移。其基本思想来源于木匠和建筑者使用的利用水泡尺在被测物体表面旋转180º来找平的古老方法。如果水泡显示了相同的结果就表示工作正常,否则就指示一个等于水泡顶点位置差额的一半的错误。在本文的应用中,伺服倾角传感器位于一个输入轴IA平行于其表面的旋转圆盘上,当要执行偏移校正操作时可以直接旋转180º到圆盘的相反位置上,如图1所示。 图1伺服倾角计的零位偏差不依赖于传感器的位置。因此,当附于水平旋转圆盘上的传感器转到两个不同位置时,其输出将不会改变。
倾角传感器在零输入(倾角传感器的底座位于绝对水平的表面上)时的输出由两部分组成:
(1)偏移误差VB定义为不依赖于倾角传感器位置的输出。
(2)未对准误差角e主要是由于倾角传感器的底座没有与测量轴线绝对平行而造成的。这样就引起了一个与未对准角度成比例的输出电压Ve(对于很小的角度来说,sine≈e)。
如果图1中的旋转底座在一个绝对水平的平面上,则很明显在两个位置上倾角传感器的偏移误差输出VB和未对准误差输出Ve的输出和为:
Vo=VB+Ve。(1)
假设旋转底座相对于Y轴倾斜了角度φ,则分析过程如下,如图2所示。
很明显图2所示的旋转传感器时,角度φ在这两个位置是相同的。显然输入轴线的方向是相反的,这样输出电压的Vφ极性也相反。在位置1和位置2电压输出是重叠的:
V1=Vo+Vφ=VB+Ve+Vφ(2)
V2=Vo-Vφ=VB+Ve-Vφ(3)
最后,位置1和位置2的输出相减(V1-V2=2Vφ)即可得到结果: 一般来说,从等式中可以看出偏移误差和未对准误差是可以完全消除,从而可以得到真实的角度。事实上,这就是自动调零的作用。要把这些理论应用于实践,以下的基本条件必须满足:
(1)在位置2时的旋转圆盘的表面必须与位置1的表面平行。
(2)因为倾角传感器事实上是一个加速度计,所以在执行误差校正操作时仪器必须静止,而且要尽量避免震动。
(3)在测量位置的读数应该在倾角传感器的输出达到平衡状态时读取。
三、系统工作原理和结构
根据上面提出的自动调零的理论基础,要实现倾角传感器的自动调零,倾角传感器需要精确旋转180º。经过对各种微电机的比较,选用易于进行精确控制的步进电机来实现平台的旋转,然后将倾角传感器精确地安装在此平台上。倾角传感器在两个相反位置上的读数需要用足够位数、精度和响应速度的A/D转换器进行转换,最后利用单片机存储和计算最终结果。其数字输出结果通过RS-232或者其他形式进行输出,如图3所示。
四、试验结果
1、温度漂移试验
经过对倾角传感器自动调零原理的研究,设计并实现了自动调零伺服倾角传感器样机。为了验证自动调零伺服倾角传感器的自动调零和消除漂移特性,对此倾角传感器进行高低温试验。其温度试验结果如表1所示,其中V0和V180是内部倾角传感器在自动调零校正操作时在两个测量位置直接读取的,而Vout是调零校正后的计算结果(下同)。 然后对结果进行修正,用于对数据进行分析,修正后的结果如表2所示。可以得到温度变化-输出变化特性图,如图4所示。可以看出,在低温-40℃到高温60℃的温度范围内,内部倾角传感器的输出V0具有最大为0.135V的温度灵敏性。而当经过偏移校正后,倾角传感器的输出Vout具有最大为0.01V的温度灵敏性。也就是说此倾角传感器的零位温度系数小于0.0001°/℃,其调零精度达到0.01°,达到了自动调零的目的,能够满足测试设备的要求。
2.零位重复性试验
零位重复性是指倾角传感器偏离零位后再恢复至零位时倾角的变化值。其数据记录结果如表3所示。对数据记录分析可知,自动调零伺服倾角传感器的零位重复性为0.001°。
3.误差分析试验
常温20℃,在-10°~10°范围内对倾角传感器进行测试,分别记录V0、V180和Vout。根据测的数据可以得到此倾角传感器的在20℃时的线性图如图5。 根据以上测得的数据可以计算出此倾角传感器输出Vout在全量程范围内的非线性误差为0.02°,能够满足测试设备的要求。
4.振动试验
将倾角传感器放在振动台上进行振动试验,振动试验的技术条件如表4所示。记录振动试验前后倾角传感器的零位输出V0、V180和Vout。其试验数据如表5所示。
经过对以上数据的分析,画出Vout在振动前后的对比图如图6所示。从图中可以看出自动调零伺服倾角传感器具有良好的抗振动和抗冲击性能,能够满足测试设备的要求。
5.连续工作试验
连续工作试验是指将自动调零伺服倾角传感器通电使之连续工作24小时,并在每隔1小时时记录其数据输出V0、V180和Vout的值。根据连续工作试验记录可以画出其连续工作的输出变化图,如图7所示。 五.试验结果
经过对自动调零伺服倾角传感器样机进行试验,最终测得其技术参数如下:
六.结束语
零位偏差和漂移是所有传感器都待解决的技术难题,本文通过研究自动调零的模型和方法及补偿量的算法,建立一套倾角传感器自动调零的理论和方法,设计实现了自动调零伺服倾角传感器样机,经过试验证明其具有良好的自动调零特性并能够消除漂移问题,具有非常重要的应用价值。
上一篇:EPS扭矩传感器的研究和发展
下一篇:加速传感器ADXL150特性及其精度影响因素
推荐阅读最新更新时间:2023-10-12 23:07
波特率漂移导致通信异常的故障排查过程
示波器的协议解码功能大家都不生疏,你是否有过波形看起来正常,协议参数、解码设置都正确,却无法正常解码的经历呢?本文以UART协议为例,分享由于波特率漂移导致通信异常的故障排查过程。 什么是波特率漂移呢?可以理解为被测部件晶振有偏差,导致实际波特率和正常的波特率不一致。为什么波特率漂移会导致通信异常呢?本文从波形出发,带你自检解码结果。 一、波特率漂移导致通信异常的故障排查 引出这样一个真实的例子,PC端发送串口数据为“0xEE 0x61 0x32 0xFF 0xFC 0xFF 0xFF”,示波器解码结果为“0xEE 0x98 0xF6 0xFC 0xFF”初步判定通信故障。但协议参数设置和解码设置都正确,为什么会出现收发不
[测试测量]
伺服控制系统和伺服驱动器的区别
伺服控制系统和伺服驱动器是两个不同的概念。 伺服控制系统,是指一个由多个部分组成的控制系统,包括运动控制器、伺服电机、驱动器等等。它用来控制伺服电机的位置、速度和加速度等运动参数,从而实现精确的控制。 伺服控制系统是一个可以通过传感器测量和反馈机器的运动状态和位置的系统。它根据所需的输入信号来控制和调整输出运动。一般由控制器、编码器、传感器等组成,具备从上层控制主机接受运动指令、实现电机精准定位的功能。 而伺服驱动器,则是伺服电机的驱动部分,它通常由电源、运算器、功率输出等三部分组成,通过调节输出电流、电压等控制信号,实现对伺服电机的精确驱动。 可以说,伺服驱动器是伺服控制系统中的一个重要组成部分,但伺服控制系统不仅仅只包括伺
[嵌入式]
台达A2伺服在弹簧成型设备上的应用
弹簧成型设备主要分成纯机械类型和数控控制类型两种。数控控制类型的弹簧机成本比较昂贵,也比较主流;而机械控制的弹簧机机械复杂笨重灵活性不够,不能满足多种弹簧的生产需求。而使用台达A2伺服的弹簧设备,介于两者之间,能够省去部分机械,提高工作效率,此设备主要是使用A2伺服来满足弹簧成型设备的送钢丝部分,凸轮送钢丝可以满足与主轴同步追随及钢丝长度的随时调整。
1 弹簧成型设备的控制需求
弹簧成型设备结构如图1所示。其中,伺服控制部分使用了内建的电子凸轮功能的A2伺服负责弹簧钢丝的送料进给;而机械控制属于主轴控制,主动动力使用变频器驱动,控制机械凸轮转动,促使弹簧成型,主动轴上安装了编码,作为伺服控制的命令来源;光电信号则作为凸轮的
[嵌入式]
“自己”的伺服电机 把机器人“伺候”得妥妥帖帖
记者近日在内蒙古包头市中科智能科技有限公司数字化车间内采访时看到,一台六轴工业机器人精准控制托盘不断倾斜、转动,最后将托盘放入成品装置中。这种需要几个人互相协作完成的工作,机器人仅仅用了几秒钟。 “完成这种精细操作,伺服电机功不可没,它用的是体积、质量都非常小的电动机,但还能经受住机器人频繁的正反向和加减速运行。”中科智能副总经理闫荣告诉记者。 据了解,工业机器人关节越多,柔性和精准度越高,对于伺服电机本体的功率密度、运动精度、响应速度、短时过载能力都要求很高。数据显示,中国工业机器人未来3年复合增长率将达到40%,但长期以来,国内伺服电机系统竞争力远不及日本和欧美,尤其在高精度、高响应速度的应用场合依然主要依赖于国外进口,不但价
[机器人]
伺服系统的需求随宠大的机器人市场不断上升
根据调查显示,2010年,中国机器人市场销量为14,980台,2011年达到22,577台,同比增长50.7%。而最新统计数据,2012年中国工业机器人销量达到26,902台,同比增长19.2%。 2013年初,富士康在多地暂停招工,而暂停招工的背后无疑与2011年底提出的100万台机器人战略有关。事实上,富士康的机器人计画只是台湾加工型企业挺进"铁甲时代"的一个缩影。而在世界各国制造业,机器人队伍正日渐取代传统工作力,尤其在装配、点胶、搬运、焊接等工业领域,已经掀起了一股机器人使用热潮,大量使用工业机器人的企业已从国际大厂普及到地方性产业。预计到2015年,中国机器人市场需求总量将达35,000台,占全球比重16.9%,
[机器人]
一种三轴伺服控制器的设计优化
目前伺服控制器的设计多以DSP或 MCU 为控制核心,伺服控制器是用来控制伺服马达的一种器件,一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位。 从结构上看,伺服控制器和 变频 器差不多,但对 元器件 的要求精度和可靠性更高。目前主流的伺服控制器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能 功率模块 (IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对 驱动器 的冲击。
1 总体方案
FPGA(Fie
[嵌入式]
FANUC M-410iC机器人:搭载了FANUC最尖端的伺服技术,码垛效率更高
豆类产品营养丰富,素有“田中之肉”的美誉,随着自动化技术的发展,豆类加工技术正悄然发生改变,干豆加工的袋码垛生产线也因为一款机器人的应用而大大提高了产出。
英国干豆加工商Askew & Barrett专注于对干豆进行分拣、清洗和分级等加工,并将干豆装入12.5千克和25千克的纸袋以及25千克的聚丙烯编织袋(WPP)中,然后进行码垛并运输到国内外的食品制造商和零售商处。
为了提高生产效率,Askew & Barrett将目光锁定在码垛环节。在位于英国剑桥的工厂,Askew & Barrett引进了FANUC M-410iC机器人,通过自动化码垛,将生产效率提高了20%,并且消除了潜在的健康和安全风险因素。
码
[机器人]
PLC如何控制伺服电机?如何设计伺服系统?
PLC如何控制伺服电机? 在回答这个问题之前,首先要清楚伺服电机的用途,相对于普通的电机来说,伺服电机主要用于精确定位,因此大家通常所说的伺服控制,其实就是对伺服电机的位置控制。 其实,伺服电机还用另外两种工作模式,那就是速度控制和转矩控制,不过应用比较少而已。 速度控制一般都是用变频器实现,用伺服电机做速度控制,一般是用于快速加减速或是速度精准控制的场合,因为相对于变频器,伺服电机可以在几毫米内达到几千转,由于伺服都是闭环的,速度非常稳定。 转矩控制主要是控制伺服电机的输出转矩,同样是因为伺服电机的响应快。 应用以上两种控制,可以把伺服驱动器当成变频器,一般都是用模拟量控制。 伺服电机最主要的应用还是定位控制,位置控制有两个
[嵌入式]
最新传感器文章
- Melexis采用无磁芯技术缩小电流感测装置尺寸
- 意法半导体Web工具配合智能传感器加快AIoT项目落地
- 贸泽开售适用于AI和机器学习应用的 AMD Versal AI Edge VEK280评估套件
- 触觉行业论坛 (HIF) 发布提案征集,推进通用触觉API 的触觉基元标准化
- 安森美Hyperlux图像传感器将用于斯巴鲁新一代集成AI的EyeSight系统
- 恩智浦FXLS8971CF和FXLS8961AF加速度传感器提升您的精密测斜仪应用性能
- 贸泽开售可精确测量 CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- Melexis推出超低功耗车用非接触式微功率开关芯片
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
厂商技术中心
随便看看