基于传感器的低成本可燃性气体泄漏报警器设计

最新更新时间:2012-10-11来源: 21ic关键字:传感器  报警 手机看文章 扫描二维码
随时随地手机看文章

液化石油气、煤气等可燃气作为燃料常因产生泄漏而造成中毒和火灾等事故。已有的可燃气体泄漏报警器种类繁多,重要用于工业厂矿,体积大,价格高,难以推广到家用。虽然也有一些简易报警器,但也是结构复杂,价格偏高,推广到家用比较闲难。为此研究了用一个简略的数字和模仿集成电路相联合的技巧解决了装置成本高的问题。研制出了小巧的可燃气体泄漏报警器,它结构简略,成本低廉(主电路元件费只有3元左右,含外壳和电源的全部材料费只有十几元),且报警敏锐度在传感器的性能领域内任意可调。试用成果表明,该装置应用方便,效果非常好,且只需简略改良即可增长把持功效,可方便实现主动把持开启风扇等装置。该可燃性气体泄漏报警器不仅适于家庭,也适于工矿企业等利用,且其报警敏锐度、报警提示功效、可靠性等优于目前已有产品。

1 系统设计优化比较

目前可燃性气体泄漏报警器的实现技术分为两大类,一类是以单片机为核心的智能型报警器,包括信号调理、A/D采样和输入输出电路等,相对复杂。另一类完全用硬件实现,电路非常复杂。这两类技术都采用较复杂的电路解决可燃气传感器的初始报警问题。而初始报警的原因是由于传感器在开始加电时,其电导率尚未达稳态值,从而导致误报警,约3 min后,传感器的电导率达稳态值,报警才停止。

为了解决初始报警问题,可采用以下两种方案:

1)采用二次报警方案,该方案是将传感器的初始电导率的当量可燃气浓度作为第一阶段报警浓度,这一阶段只让报警灯亮,喇叭不响。第二阶段报警是当可燃气泄露浓度达到一个临界危险浓度时再开启声音报警。这类方案需要较复杂的两阶段比较报警电路,提醒力不强且不可靠,报警灵敏度不可调;

2)采用比较或反馈延时的报警方案,但电路非常复杂,成本较高。因此,采用硬件设计降低成本是关键。这里提出一种采用数字和模拟集成电路相结合的设计方案,解决报警和二次报警的问题,并取得很好效果。

2 器件选择与工作原理

气敏传感器种类繁多,性能各异。这里选用MQ-KC型传感器,它是一种新型的电阻型气敏型元件,可用于天然气、煤气、石油气等检漏报警。具有灵敏度高,长期稳定性好,寿命长,价格低,功耗小,可方便使用电池等特点。MQ-KC型传感器原理:将该传感器接至规定负载,在加电的初始阶段,传感器的电导率呈现一个较高的值,约3 min左右达到稳态值。若将其置于具有一定浓度的可燃气体中,其电导率将升高,在一定范围内,可燃气体浓度越高,传感器电导率也越高,如果将传感器与负载串联,负载即引起电压变化,读取这一变化电压,经比较、放大即可实现报警与控制等功能。

3 硬件电路设计

3.1 基本报警电路

MQ-KC型传感器额定电源电压为9 V,要求连接一只负载电阻。信号取出与比较电路如果用分立元件设计,元件数量多,成本高,且效果不好。为此,选用一片单电源9 V供电,具有一定驱动能力的集成双运放来实现。图1为该基本报警电路。

 

 

图1 基本报警电路

图l中,R1是传感器要求的负载电阻,阻值为120 Ω,Vcc为9 V电源电压;A、B为LM358双运放,A为跟随器,起缓冲隔离作用,以便将R1上的电压VR1基本上全部施加到比较器B的同相输入端。RW为报警灵敏度调整电位器。稳态时,调整RW使得加到比较器反相输入端的电压V-略高于稳态时R1上的电压VR1这个电压越高,报警灵敏度就越低。加电并使传感器达到稳态后,MQ-KC为较稳定的固定阻值,当Vcc不变时,VR1基本为一固定值,保持不变。当有可燃性气体泄露时,传感器接触到可燃气,使其电导率上升,电阻下降,使VR1上升,当VR1高于V-时,比较器输出一个大于7 V的电压,从而使蜂鸣器HA发出滴、滴的报警声。若用该电压控制一个继电器,即可实现控制功能。为了提高抗干扰能力,可分别在R1和B的V-端并联一只滤波电容。

R1、R2和RW的取值不宜过小,以降低电源供电电流。其值可由式(1)估算,在估算时,RW可暂不考虑。

 

 

令V-=VR1,取R3=2 kΩ,已知Vcc=9 V,即可求出R2。本装置R2=10 kΩ,RW=lO kΩ。

3.2 初始报警电路

图1所示的基本报警电路的不足:一开始加电时,传感器尚未达到稳态,其电阻值较小,VR1较大,导致蜂鸣器HA误报警。为了解决这一问题,采用一个数字信号控制的模拟开关,其控制信号采用简单的电容充电延时电路,原理图如图2所示。图1中比较器B的输出V0加到模拟开关4066的输入端,开关的输出端接蜂鸣器HA。初始加电时,电容C上的电压VC为0,4066不导通,无论V0值为多高,HA都不会报警。随着电容充电,VC不断升高,当达到4066的控制门限阈值时,4066才导通,即能进入报警状态。电容充电使其电压达到4066的控制门限阈值时间即为延时时间。电容C和电阻R的取值可根据延时要求确定。为可靠起见,取RC=1/2T,T为传感器初始稳定时间。本装置取R=l MΩ,C=100μF,即能实现可靠的延时。

 

 

3.3 整机硬件电路设计及调试

将上述两个电路合起来即构成了整机电路,如图3所示。为了使V-稳定不变,R1、R2应采用精密金属膜电阻。装置开机预热3 min后,用万用表测R1上的电压VR1,测得为1.7 V。若要想让装置的报警浓度为x%,有条件时,可将传感器置于浓度为x%的可燃气体中(可用气体成分分析仪监测),lO s后再测R1上的电压得到VR1。调整RW,将V-调到略小于VR1。正常使用时,当可燃气体泄漏浓度达到标定浓度x%时,装置就会报警,若增加了控制装置,可控制开启风扇或关闭阀门等。在没有条件时,调整RW,将V-调到略大于VE1,保证在正常空气环境不报警。再将装置于可燃气灶具旁,打开灶具开关,吹熄火焰,有少量可燃气体泄漏,装置应报警。若要提高报警浓度,可调RW加大V-,反之应减小V-。

 

 

3.4 电源设计

本装置的电源供电总电流小于20 mA,因此可使用9 V的电池供电。样机选用交流220 V供电,使用一个7809三端稳压器稳压。

4 试用实验及结果

4.1 试用结果

将该装置置于厨房,开机预热3 min,装置无初始报警。关闭厨房门,放出适量煤气,几秒钟后装置开始报警,再将装置移离现场到,约30 s后报警停止。在正常空气的厨房中,将装置开机预热3min后置于可燃气灶边,打开灶具开关,吹熄火焰,几秒钟后装置开始报警,当厨房中仍散有煤气时,它将持续报警,将它置于窗外,它才能较快恢复并停止报警。

4.2 应用与安装

本装置不仅可用于工矿企业的可燃气泄漏报警,由于其成本特低,因此,也可推广到普通家庭,作为燃气洗澡装置和厨房可燃气的泄漏报警器。只要将其安装在燃气装置附近(相距1 m以内效果最好)即可实现自动泄漏报警。安装时,应注意不要将装置安放在通风口处。

5 结束语

本装置采用一块数字控制的集成模拟开关和阻容充电电路解决了可燃性气体报警装置的初始误报警问题,用一个单电源供电的双集成运放实现信号取出、比较和报警驱动,并使装置报警灵敏度在传感器性能范围内任意可调。实现如下性能:功耗小于0.3W;灵敏度V1/V0>2;响应时间小于lO s:恢复时间小于30 s。该可燃性气体报警装置采用数字和模拟集成电路相结合的技术,大大减少了元器件数量,从而提高了装置的稳定性和可靠性,且使得主电路的元件成本不到3元。使其具有较高的性价比,还可以根据用户需要和具体情况进一步改进该报警装置。加一级控制电路,只要在比较器B的输出加一级继电器驱动即可实现。

关键字:传感器  报警 编辑:冀凯 引用地址:基于传感器的低成本可燃性气体泄漏报警器设计

上一篇:微软穿戴式3D传感器Digits 可感知并跟踪用户手部动作
下一篇:飞思卡尔12轴Xtrinsic传感器平台通过Windows®认证

推荐阅读最新更新时间:2023-10-12 23:08

自诊断传感器模块提升汽车网络效率
  如今汽车内的电子元器件价值已占到总车的15~20%。未来,随着车辆中植入更多的安全电子设备、燃油消耗和燃料排放控制电子系统、通信和导航系统、信息娱乐系统以及其他提升舒适度的电子系统,该比例可能会高达30~40%。   目前实现上述功能需要20~50个电子控制单元(ECU),所用到的传感器差不多有70~150个。这些传感器负责测量的环境数据范围很广,有压力、温度、流量、速度、加速度以及角度等。它们将测量值送到ECU进行引擎和环境控制、安全气囊触发,从而提升舒适度和安全性。像ABS、电子稳定程序/控制(ESP/ESC),以及刹车辅助系统等,都要依赖传感器输入。   在这些应用中,各种系统的自诊断能力正变得日益重要。例如
[汽车电子]
自诊断<font color='red'>传感器</font>模块提升汽车网络效率
浅谈中国报警服务业市场现状及基本特点
    经过三十多年的发展,中国报警服务业已经基本形成产业雏形,市场竞争加剧,资本市场未来博弈的又一个新战场。2010年《保安服务管理条例》的正式发布,并没有使得报警服务业进入发展的快速道,转眼进入2013年,随着《保安服务许可证》的逐步发放,市场逐渐迎来了春天,随着而来的是各路诸侯蜂拥而入,工程商转型报警服务商,社会闲散资本投入报警服务业,使得原有的报警服务商突然感觉“狼来了”,变革或者转型已经成为报警服务商在2013年面临的主要问题。   中国报警服务业还处于萌芽期,企业无论是服务客户数量还是服务内容都与国外报警服务巨头有很大差距。其中,国有保安服务公司会相对好一点,但是随着2013年3月-6月的强制改制最后期限,国有保安
[安防电子]
电解质型倾角传感器在天线控制中的应用
1.引 言  传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,作为信息系统的关键基础器件,近年来,已经受到国内外的广泛关注。倾斜传感器作为经典的传感器之一,也正在被新材料、新原理、多功能、新结构所取代,与数字技术、通信技术的结合越来越密切,朝着集成化、智能化和微型化方向发展。                                                                                图一  2.倾斜传感器原理  为了测知被测物体与标准水平面的倾斜角度,常常用到一种 电解质型 传感器.图为一双轴传感器在轻微倾斜时单轴向示意图,传感器由密封圆筒构成,圆筒
[嵌入式]
基于MMA8452Q传感器的计步器抗干扰设计
伴随着人们生活质量和科技水平的提高,辅助锻炼设备不断出现,计步器就是一种日常锻炼监测器,通过记录人们行走的步数,监测自己的健身强度,方便实用。加速度传感器可用于间接步数检测。由于近年来MEMS加速度传感器发展很快,并具有价格低、体积小、功耗低、精度高的特点,利用其来设计电子计步器,已经多有报道,市场上也有产品出售。目前存在的主要问题是计步精度,尽管在加速度的检测上传感器的精度高,但是计步却受到诸多干扰影响,精度难以保证。本文以MEMS加速度传感器。MMA8452Q为基础,研究其工作特性,针对计步干扰信号特点,采取抗干扰措施完成电子式计步器设计。 1 系统方案设计 1.1 基于加速度信号检测的计步器原理 距离、速度
[单片机]
基于MMA8452Q<font color='red'>传感器</font>的计步器抗干扰设计
新型超轻薄医学电子传感器 佩戴者毫无感觉
    据英国新科学家杂志报道,一种布满传感器的透明塑料薄片可作为医学植入器,其结构非常微妙,不会引起人们的刻意关注,或者它可作为假肢和机器人的“感官皮肤”。日本东京大学材料科学家染矢高雄(Takao Someya)和马汀-卡尔藤布鲁恩(Martin Kaltenbrunner)指出,这种塑料质地电路比羽毛还轻,仅有1微米厚度,非常柔韧,可以作为植入器放置在人体中,且很难感受到它们的存在,例如:放置在手背,或者贴在嘴唇上。     染矢高雄说:“这项技术旨在研制新型生物医学传感器,使佩戴者没有不舒适的感觉。它还可以在无压状态下测量体温和心率,这是设计感官触觉或者温度的人造皮肤关键性特征。”     之前科学家曾建造
[医疗电子]
Silicon Labs推出突破性心率监测传感器解决方案
-具有先进算法的Si1144光学传感模块有效降低腕上心率监测设备的成本和复杂度- Silicon Labs(芯科科技有限公司,NASDAQ:SLAB)日前推出能有效降低腕上心率监测(HRM)应用成本和复杂度的光学心率传感器解决方案。新款Si1144 HRM解决方案由低功耗的光学传感器模块和运行Silicon Labs先进HRM算法的节能型EFM32 Gecko微控制器(MCU)组成。小尺寸Si1144传感器模块集成了光学传感器、绿光发光二极管(LED)、支持最大2个片外LED的LED驱动器、模数转换器(ADC)、控制逻辑和I2C数字接口。 根据Silicon Labs的预测,到2018年市场上每年将售出
[传感器]
报警探测器的接线方式
一个防盗报警系统其主要部件是由报警主机板、前端探测器和警讯发送装置(联网报警通讯和现场声光报警)组成的。前端探测器包括了被动红外、红外加微波双鉴、红外对射、红外护栏、手动报警、火宅探测、玻璃破碎等等,根据不同的功能适用于不同的环境。前端探测器是报警系统的传感器,报警系统对外界警情的侦测就是通过前端探测器来完成的。就前端探测器和报警主机间的联系、信号传递,说到底就是一个开关量信号的传送和接收过程。所谓开关量信号,就是一个电气回路的开路和短路过程。以常规报警系统一般采用常闭工作模式为例,系统加电正常工作时,如果探测器失电或被警情触发,探测器内的继电器发出动作,将触点由闭合状态改变为断开状态,当报警主机侦测到对应防区端口的这一变化时,就会
[测试测量]
CAN总线倾角传感器工程机械应用
CAN-bus总线简介    CAN-bus总线 是国际上应用最广泛的现场总线之一,最初被设计用作汽车电子控制单元(ECU:Electric Control Unit)的串行数据传输网络,现已被广泛应用于欧洲的中高档汽车中。近几年来,由于CAN-bus 总线极高的可靠性、实时性,CAN-bus 总线开始进入中国各个行业的数据通讯应用,并于2002 年被确定为电力通讯产品领域的国家标准。   CAN-bus 网络使用普通双绞线作为传输介质,采用直线拓朴结构,单条网络线路至少可连接110 个节点,当通讯距离不超过40米时,数据传输速率可达1Mbps,最远通讯距离可达10公里(使用标准CAN 收发器PCA82C250/251
[模拟电子]
小广播
最新传感器文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved