The Challenge:
创建一个用于快速采集面向高级无损探伤应用的超声相控阵列回波信号的、可伸缩的、低成本系统。
The Solution:
利用NI PXI 控制器与机箱、多通道高速量化仪和可重新配置的I/O FPGA 实时控制器,以及NI LabVIEW 软件,设计一个具有严格定时与同步的可扩展的采集系统,以执行面向实时超声图像处理的相控阵列数据采集。
"PXI-5105 所提供的解决方案可以扩展以满足客户的需求,并具有提供简单的软件移植方式的记录功能。"
背景
超声相控阵列已经在医学图像处理领域内应用多年,但由于成本和复杂度的限制,该技术直到最近才在无损探伤(NDE)领域实现有限的成功应用。诊断声纳有限公司在航空NDE的实时图像处理中已经有三十年的阵列技术应用经验。这一背景支持我们率先研究一项新的主要功能——所谓的完全原始数据(FRD)的收集与处理,它赋予客户显著的技术优势,但也对数据采集软硬件提出了新的挑战。
传统的脉冲回波超声阵列图像处理技术涉及超声阵列中一组元素的相位激励——不同元素之间匹配不同传播路径的延迟以生成具有特定聚焦和方向的光束。模拟接收过程涉及在插入不同的延迟后将一组相似元素的信号相组合。这些时延可以随时间变化,以便接受焦点跟踪传输脉冲,这个过程称为动态聚焦。图像由一个扫描兴趣区域所得的光束序列组成。如果帧速率超过15 赫兹,用户则认为这是实时性能。然而,区域覆盖则要求高得多的数据速率,通常要达到100 赫兹。
与之相反,FRD收集所有发送和接收元素组合的脉冲回波数据,并通过后续处理生成所得到的结果图像,进而支持发送及接收的动态聚焦以获得最佳精度。该项新技术还提供了数项独特的可能处理,例如非线性光束成形与后向散射分析。
先前的系统局限
我们先前的图像处理系统“裂纹探测系统”是基于PC 的,使用NI图像采集板卡以及LabVIEW采集非标准视频格式的超声图像数据。我们选择LabVIEW,是因为它满足了我们的初步需求——能够快速开发简单而强大的用户界面、方便地控制现成可用硬件、定制硬件以及利用NI 视频开发模块实现实时图像采集与处理。这样的软硬件组合非常适合“传统的”实时脉冲回波图像处理应用。然而,图像处理板块的单通道特性限制了FRD 的区域覆盖速率。唯一的解决方案便是并行采集,但并行采集多个图像处理板卡的成本高得惊人。诊断声纳公司利用NI LabVIEW 软件与PXI 硬件,设计了一个面向实时超声图像处理的相控阵列数据采集系统。
NI 系统解决方案
该解决方案便是移植至NI PXI-5105 多通道数字化仪/ 基于PC 的示波器,该产品的灵活性足以处理我们需要的图像格式,并提供了一个简单的软件更新方式。
每台NI PXI-5105 通过八个通道进行数据采集,支持单个模块替换八个图像采集板卡的任一个,并显著降低成本、减小尺寸。我们可以仅利用四个模块实现一个32-通道的采集系统。PXI-5105还实现了性能的提高——相比我们先前系统的40 MS/s采样率下10-位的精度,该系统为60 MS/s 采样率下12- 位的精度。
所有采集板卡间的严格同步基本是必需的,因此,我们在星形触发器插槽内使用一个NI PXI-7830R,用于早先在定制FPGA 中实现的关键定时与控制功能。
利用每个模块的八个通道、高精度采样(幅值与时间)、多记录格式和一个面向LabVIEW的标准化的驱动程序接口,PXI-5105凭借其灵活性与模块性实现了一个通道容量几乎不受限制的坚固系统,因此,我们可以方便地配置系统以满足客户的性能需求与预算要求。
挑战
FRD方法引入了两大主要挑战。第一个挑战便是数据中数量级的增长,这可能远远超出总线传输的容量。PXI-5105 的板上提供了缓存功能,使得传输受限于平均速率而不是峰值速率。当对较小区域进行非常快速数据采集时,我们会超过这一速率;在此情况下,一旦采集数据溢出时,板上内存足以容纳所有传输数据。第二个挑战便是在采集过程中将数据重构成图像的必要性。我们发现NI 视觉开发模块的速率足以实时执行这一基本图像处理操作。
总结
NI硬件与NI LabVIEW软件已经在面向无损探伤应用的诊断声纳公司的“裂纹检测系统”超声相控阵列图像处理设备最新系列中证明了其自身价值。我们新的FRD 数据采集方式为客户提供了许多技术优势,但现有的单通道配置会导致区域覆盖速率的显著下降。我们需要多个数据采集通道,但多个单通道板卡带来的额外成本与尺寸并不可行。PXI-5105 所提供的解决方案不仅可以扩展以满足客户的需求,还具有提供简单的软件移植方式的记录功能。
关键字:LabVIEW FPGA Module Vision
引用地址:
利用NI LabVIEW和PXI进行诊断声纳
推荐阅读最新更新时间:2024-03-30 22:07
基于FPGA的实时无损数据压缩系统设计
引言 在工业生产和科研中,通常要对信号进行长时间高速采样,会产生大量采样数据。在一些特殊环境下,受体积和功耗的限制,不能添加过多存储器,需要引入数据压缩技术来解决。软件压缩算法的运算量较大,需要很高的CPU运算速度和数据缓存空间,所以软件压缩一般应用在对时间要求不高的非实时压缩场合。而对运行速度有特殊要求的情况下,对数据的实时压缩一般都要用硬件实现。有损压缩之后数据进行重构,与原来的数据有所不同。多数数据采集系统因被测对象的不确定性,需要采用无损数据压缩。由于LZW无损压缩算法具有自适应特性,在对信号统计特性不明确的情况下仍然有较好的压缩效果。结合FPGA的高集成度、低功耗、灵活性及并行运算的特性,该设计用FPGA硬件实现
[嵌入式]
基于LabVIEW的数控机床网络测控系统——总体设计 (二)
3.3通用数据采集卡的驱动设计 系统中,在数据采集卡部分,LabVIEW提供了大量的数据采集子程序,这些驱动程序从简单到高级,可以提供给用户使用,但这些子程序只支持NI的数据采集卡(DAQ)以及少数公司开发的支持LabVIEW平台的数据采集卡,而这些卡的价格较昂贵,一般的用户很难接受。因此,为了能在LabVIEW平台上使用普通数据采集,有以下几种方案可以解决LabVIEW与普通数据采集卡驱动的问题。 3.3.1基于LabVIEW的普通国产采集卡的驱动方法 为了解决LabVIEW与普通国产采集卡的接口驱动问题,有三种可行方案: ①直接用LabVIEW的InPort , OutPort图标编程方式; ②用LabVIEW的CIN图
[测试测量]
关于Labview里对excel的编程
这里只讨论通过Activex的方法,因为只有这种方法,才能完全发挥Excel的所有强大的功能。 首先,Labview是有一些自带的关于Excel编程的例子的。在find example里search一下,有挺多的,其中有一个叫write table to XL.vi,我最早就是跟着它学的。学了不少,也被误导了很久,其实也不能算误导,只是以前没花时间去研究。最近在用Labview写一个类似ERP一样的软件,接触很多Excel表格,花了些功夫在Excel VBA上,也算比以前有了更多的认识了。 先来看看write table to XL这个程序:这个程序的目的就是把一个2维数组(表格)里的内容写到excel里。
[测试测量]
推出四款小封装FPGA器件
赛灵思公司推出其最新的 90nm 低成本 Spartan™-3A FPGA 器件。针对数字显示、机顶盒以及无线路由器等应用而优化的这些小封装器件满足了业界对更小器件封装尺寸的需求,为成本极为敏感的消费电子设计提供将更好的支持。 Spartan-3 系列平台 : 低成本消费应用的首选 赛灵思在大批量消费应用领域所取得的成功很大程度上依赖于其Spartan系列的灵活性和成本优势。Spartan系列自1998年推出以来,营收已经从零份额增长到超过公司总营收的25%。 Xilinx Spartan-3 系列支持业界最广泛的 I/O 标准( 26 种),结合独特的电源配置功能和
[嵌入式]
LabVIEW编译程序设计知识介绍
编译程序设计是一个复杂的话题,即使对内行的软件工程师来说也要考虑很多专业知识。 NI LabVIEW软件是一种多规范的图形化编程环境,含有多种概念,包括数据流,面向对象,以及事件驱动编程。LabVIEW也是跨越多种平台的,能够很好地用于多种操作系统(OSs),芯片组,嵌入式设备,以及现场可编程门阵列(FPGAs)。LabVIEW编译程序是一种精密的系统,在过去的20年中具有令人瞩目的发展。探索NI公司的LabVIEW编译程序的处理过程以及近来编译程序的创新。 LabVIEW编译程序处理过程 首先一个VI的编译是类的扩展,主要负责将隐含的类解析为适于终端输出与检查句法错误的类型。在类扩展之后,VI从编辑模型转
[测试测量]
USB的便携式ARINC429总线通信设备设计
在航空 电子 综合化系统中,快速、有效的数据传输对整个航空 电子 系统的性能有很大影响,因此数据总线被称为现代航空电子系统的“骨架”。ARINC429是航空电子系统之间最常用的通信总线之一。要在计算机上实现与机载设备的ARINC429总线数据通信,必须实现429总线与计算机总线之间的数据传输。本文设计了基于USB总线的便携式ARINC429总线通信设备,并通过实际运行测试,对该设备的可靠性和稳定性进行了验证。 1 系统总体设计 1.1 系统功能分析 该系统主要分为3大功能单元:中央 控制 单元、429数据收发单元、429电平转换单元。系统的功能结构框图如图1所示。中央 控制 单元与PC机进行USB通信,将USB总线转换为自定
[模拟电子]
采用LabVIEW的海洋环境多物理场测量系统设计
一、引言 近些年来,随着人类对于海洋开发力度的增加,关于海洋方面的研究越来越广泛深入。相应地,海洋中各种环境物理场也成为了研究关注的焦点。因为对于海洋环境物理场的了解,意味着人们可以更加熟悉海洋,利用其环境物理场的变化规律,使我们在海洋地质勘测、地震预警、海洋捕捞、石油勘探等领域,更加的方便、有效。 而随着海洋物理场水下物理场测量测试需求的增加,传统的测试手段已经无法满足现在的测量需要,繁多的各物理场采集系统硬件设备测量灵活性差,系统的安全性和可靠性低的缺点,已严重限制了在需要多个环境物理场同时进行测量中的应用。因此,对于一个小型化、智能化、布放便捷的海洋环境物理场测量系统的研究开发已经成为必需。 二、硬件系统介
[测试测量]
再思考FPGA中的同构和异构设计架构
早在2001年,我曾写过一篇专栏文章,内容是关于在针对信号处理的应用中,采用异质结构设计所具备的优点。我的依据是:信号处理应用一般包括不同的数据速率、数据类型和算法;另外,针对这些不同需求有针对性地采用不同处理引擎,比一个以不变应万变的方法更有价值。当时,采用 异构 处理架构一般意味着采用两个或更多个芯片。 六年后,我们置身于追逐采用多核架构的潮流之中。这些芯片包含数以十计甚或数以百计的 处理器 ,有时甚至包括类似FPGA那样的器件。此时,是采用 同构 还是异构处理元件的问题仍是个关键的设计决定,尽管在这种情况下,问题出现在芯片层面而非系统层面。 一般来说,同构设计便于使用且适合更广泛的一
[嵌入式]