一种高速数据采集卡的设计与实现

发布者:MindfulYogi最新更新时间:2011-06-12 关键字:数据采集  复杂可编程逻辑器件  FIFO  时序控制  逻辑控制 手机看文章 扫描二维码
随时随地手机看文章

O 引言
    测试设备是武器系统中最主要的子系统之一,它的工作正常与否将直接影响到整个武器系统的作战性能。在对武器系统进行测试的过程中,需要对一系列的电压、电流等模拟量信号进行快速、实时的数据采集和分析,检查这些模拟量的指标是否符合要求,可以对武器系统是否发生故障做出诊断,保证武器系统的正常工作。根据现代战争对武器系统的作战需求,提高快速机动保障能力,研制出体积小、结构紧凑、便携式的测试设备就成为主要的目标。
    本文设计了一种基于PC/104总线的高速数据采集系统,其目的在于替代示波器在武器系统测试中的作用。常规采集方案主要有两种:
    (1)由单片机直接控制的采集方案,这是最简单最常用的控制方案。由于每次采样都要有单片机的参与,需占用单片机的时间,影响其数据处理,而且对于多通道、多个A/D转换器的控制,因所需处理的信息更多,则更加不方便。
    (2)由DMA控制的采集方案。此方案硬件电路复杂,若与单片机配合使用,需要单片机具有总线挂起功能,否则还需要进行总线切换,影响数据的及时处理。
    综合以上两种方案的优缺点,本数据采集卡自动采样硬件电路主要采用可编程逻辑器件CPLD和先进先出FIFO(First In First Out)技术设计而成,可以很好地实现高速数据采集。

1 数据采集卡总体方案设计
    数据采集卡是由信号调理电路、带采样保持器的A/D模数转换器、多路模拟开关、FIFO数据缓存、CPLD芯片及时钟电路等部分组成,具有高精度、高可靠性、高抗干扰能力等特点。总体结构设计原理如图1所示。

a.JPG

2 芯片介绍
    该数据采集卡采用的芯片主要有:AD9283模/数转换器、AD508A多路选择开关、EPM7128SCL84-6CPLD和CY7C4261 FIFO缓存器。下面对以上所用芯片做一简要介绍。
2.1 AD9283模/数转换器简介
    本数据采集卡选用了ANALOG DEVICE公司生产的高速8位模/数转换器AD9283。它采用先进CMOS制作工艺,提供20脚表面贴装封装形式。片内集成高性能采样和保持放大器,输入信号可采用单输入或差分输入;处理输入电压峰峰值在0~1 V之间的模拟信号;采用单+3 V模拟电源和单+3 V数字电源;片内提供+1.2~+1.3 V的参考电压;最高抽样速率可达100 MSPS;具有高速并行输出接口。
2.2 EPM7128SCL84-6 CPLD芯片简介
    本数据采集卡选用一片Altera公司生产的EPM7128SLC84-6CPLD作为核心处理芯片,它具有高阻抗、电可擦除等特点,可用门单元为2 500个,有64个用户可用I/O引脚,工作电压为+5 V,管脚间最大延迟为5 ns,采用PLCC-84封装,通过JTAG接口可实现在线编程。
2.3 CY7C4261 FIFO缓存器简介
    本数据采集卡选用的FIFO器件是CYPRESS公司生产的高速、低功耗、先入先出存储器芯片CY7CA261。它的容量为16K×9位,读写周期为10 ns,支持异步和同步读写操作,写数据和读数据分别具有时钟和使能信号,具有“空、满、可编程几乎空、可编程几乎满”四个状态标志位,没有绝对地址的概念,只有读指针和写指针的相对位置,只要标志不为0,就可以进行写操作,只要标志不为0,就可以进行读操作,读写操作可以同时进行。[page]

3 数据采集卡电路设计
3.1 信号调理电路
    被测信号在进入A/D转换器之前,都必须进行适当的处理,使之符合A/D转换器的量程要求。对大信号需经过适当的衰减,而小信号则需要放大。本数据采集卡采用的A/D转换器的输入电压峰峰值在0~1 V之间,而被测信号幅度都大于此值,所以信号在进入A/D转换器之前需对其进行衰减处理。具体的分压限幅电路如图2所示。

b.JPG
3.2 A/D转换与FIFO缓存电路
    由于AD9283数据最大采集频率为100 MHz,所以其最大数据存储频率至少应为100 MHz,而CY7C4261的最大存储速率为100 MHz,能实现系统要求,系统中CY7C4261的写时钟与A/D转换采用同一个时钟进行控制。在测试过程中,有些待测信号周期较大,而本数据采集板的采样频率为100 MHz,为了在数据采集过程中不丢数据,需要连续采集大量数据。一片CY7C4261的存储容量不够,需要两片轮流存储。AD9283与CY7C4261的接口电路连接如图3所示。

c.JPGc.JPG[page]

4 CPLD在数据采集卡中的应用
    CPLD作为整个数据采集过程的控制核心,负责地址译码、多路开关选通、A/D转换启动、将转换结果写入FIFO以及两片FIFO之间的切换等一系列操作。它的三个功能模块分别为:地址译码模块、多路开关控制模块、A/D采样及FIFO控制模块。
4.1 地址译码模块
    该模块实现了CPLD内部与PC/104总线的接口单元。本数据采集卡是作为PC/104的标准外设进行工作的。PC/104规定,外设的操作地址为A[9:0],在系统软件设计中要防止地址冲突。PC/104中使用A0~A9地址位来表示I/O端口地址,即可有1 024个口地址,前512个供系统板使用,后512个供扩充插槽使用,当A9=O时表示系统板上的口地址;当A9=1时表示扩充插槽接口卡上的口地址。因此本数据采集板的基地址由A[9:4]来确定,偏移地址由地址线的A[3:O]确定,选择该地址就意味着相应的操作,CPLD对地址进行译码后就产生相应的控制。在Qu-artusⅡ上设计的地址译码模块原理图程序如图4所示。

    地址译码的工作过程为:在拨码开关上手工设基地址,在CPLD内部划出一片74LS688地址比较器,比较CPU发出的基地址与手工设定的基地址是否一致,若不一致,则地址译码电路不工作,进而整个数据采集板都不工作;若一致,则74LS688输出低电平,使得偏移地址译码电路中的4-16译码器74LS154正常工作,在IOR,IOW信号的作用下产生各种控制信号,使数据采集板正常工作。
4.2 多路开关控制模块
    该模块实现了对八选一多路选择开关ADG508A的选通控制。通过控制使能引脚EN以及CH0~CH2引脚,可对多路开关的输入通道进行可编程选择。PC/104CPU通过地址译码选中CSWE[2],并写入数据D0~D7,就可以选择不同的通道导通。在QuartusⅡ上设计的多路开关控制模块原理图程序如图5所示。

d.JPG


4.3 A/D采样及FIFO控制模块
    该模块主要负责A/D芯片的转换时序,实现对A/D采样的合理控制,同时将转换数据存入FIFO中,并且控制着两片FIFO的轮流存储,实现大量数据的采集。PC/104CPU通过地址译码选中CSWE[O],写入数据D0~D7,将与门inst15打开,输出端ENCODE1输出100 MHz的时钟信号,PWRDWN1端输出为低电平,启动A/D转换,同时,与门inst14被打开,WCLK1端输出100 MHz时钟,将转换后的数据存入FIFO(1)中。选中CSRD[0],写人数据D0~D7,将与门inst21打开,OE2端输出低电平,使CY7C4261(2)输出使能,RCLK2端输出100 MHz的时钟信号,将数据读出。当FIFO(1)存储满时,CPLD控制由FIFO(2)来进行存储,同时将FIFO(1)中的数据读出;当FIFO(2)存储满时,转由FIFO(1)进行存储,同时将FIFO(2)中数据读出。如此反复,直至预定的延时时间止,实现了两片FIFO的轮流存储和读取,进而达到了采集大量数据的目的。另外,在每次采样及向FIFO中存储数据之前,都要求选通CSWE[5]或CSWE[6]将FIFO芯片复位,使其读指针和写指针都指向第一个物理存储地址。在QuartusⅡ上设计的A/D采样及FIFO控制模块原理图程序如图6所示。

e.JPG


    CPLD硬件控制逻辑设计的关键是分析各个器件的工作时序和采样保持时间,A/D转换时间以及数据存入FIFO的时间等。在设计的时序处理进程中,要根据CPLD的工作频率计算各个等待周期,等器件准备好以后才能进行下一个处理。

5 结语
    采用CPLD和FIFO器件设计了一种基于PC/104总线的高速数据采集卡,它可以作为PC/104总线标准模件使用。该采集板上的大部分控制逻辑被集成到CPLD芯片中,大大减少了扩展卡上的器件数量,同时降低了系统成本,提高了系统的可靠性。该数据采集板非常适合搭建高密度、小体积的便携式测试设备,可广泛应用于武器控制系统的测试等多种场合,对控制系统的模拟量信号进行快速、实时的数据采集和分析。

 

 

关键字:数据采集  复杂可编程逻辑器件  FIFO  时序控制  逻辑控制 引用地址:一种高速数据采集卡的设计与实现

上一篇:基于FPGA的数据采集系统的设计与实现
下一篇:基于虚拟仪器的电梯上行超速保护装置检测系统

推荐阅读最新更新时间:2024-03-30 22:14

基于NI Scope实时数据采集系统设计
  0 引 言   虚拟仪器的概念最早是由美国国家仪器公司(Na-tional Instrument)提出来的,经过十几年的发展,目前正沿着总线与驱动程序标准化、硬件、软件模块化、编程平台图像化和硬件模块即插即用方向发展。随着计算机技术和网络技术的飞速发展,虚拟仪器将在数据采集、自动测试和测量仪器领域得到广泛应用,拟仪器技术十分符合国际上流行的“硬件软件化”的发展趋势,尤其是在高校科研和工业生产领域中发展前景非常广阔。   1 虚拟仪器概述   1.1 虚拟仪器简介   虚拟仪器核心技术思想是“软件即是仪器”,在通用的集成硬件平台上,结合高性能的模块化硬件和高效灵活的软件使本来需要硬件实现的技术软件化。一般当标准化硬件平
[嵌入式]
基于CPLD的高速数据采集系统的实现
  液压系统具有结构轻小、传动比大、运行平稳、易于实现无级调速和自动化等优点,已被广泛应用于工业生产的各个领域。但液压传动系统(特别是大型液压系统)也存在一些缺点。主要是结构复杂、其内部状态难以检测,给液压系统的状态监测和日常维护带来一定的困难。因此如何提取系统的特征信号。有效地对液压系统进行状态监测,及时发现故障和隐患,有着十分重要的工程意义。   目前国内专门针对液压系统的数据采集产品比较少,而且存在诸如采集参数选择不当或不够、采集速率偏低、未能准确反映液压系统的工作状况、接口不利于安装或传输速度太慢等问题。本文设计了一种基于CPLD(复杂可编程逻辑器件)+FX2(单片机CY7C68013)的便携式高速数据采集系统,采用了数
[单片机]
基于<font color='red'>CPLD</font>的高速<font color='red'>数据采集</font>系统的实现
基于ISA总线的高速同步数据采集系统设计
  随着大规模集成的电路的飞速发展,PC机性能不断提高。在PC机扩展槽中嵌入以高性能微处理器为核心的智能型功能卡,可以组成综合性能极佳的分布式控制系统。这种结构方式可充分利用微处理器的控制功能、PC机的快速数据处理能力,以及多任务工作方式等特点。对于这种分布式控制系统,主机要频敏接收到来自扩展卡从机所采集的数据、工作状态等信息;向从机发送控制命令或处理数据等。这种主、从机之间的通讯,根据应用条件的不同有多种方式。但在数据传输速度较高、数据量较大且需经常交换信息的场合,采用双口共享RAM缓冲区方式是最合适的。   为了用单片机实现对微秒级甚至纳秒级高速瞬变信号进行采样,研究了一种基于ISA总线、GPS同步时钟、用硬件电路实现高速数据采
[单片机]
基于ISA总线的高速同步<font color='red'>数据采集</font>系统设计
车载低端图像数据采集压缩存储及传输系统的实现
概述 在某些需要无人控制自动监视的场合,采用常规的图像监视系统具有一些不可避免的弊端,例如:设备体积于庞大、采购费用高、需要足够的电源供应、无法重复录制等等。尤其在不需要连续图像采集的场合,常常无法采用常规的图像监视系统。根据长途汽车对上车人员进行记录的应用要求,开发了一套基于EZ- USB 的低端图像数据采集存储及传输系统。 本系统采用OmniVision公司的 CMOS 图像 传感器 OV7620作为采集芯片,Zoran公司的ZR36060作为数据压缩芯片, Cypress 的带USB接口的 单片机 AN2131QC作为总控制芯片和USB数据传输芯片。由于长途汽车的乘客上下车是非连续的过程,对图像数据的保存要求就相对较低,因
[单片机]
车载低端图像<font color='red'>数据采集</font>压缩存储及传输系统的实现
电力谐波治理装置数据采集处理系统设计
1 引言   在信息科学中,数据采集技术已经成为其重要的一个研究问题,它已经与计算机技术、网络技术、传感器技术、信号处理技术共同构成了现代检测技术的基础,随着科学技术的发展和数据采集系统的广泛应用,人们对数据采集的主要技术指标,如采样速率、分辨率、精度、输入电压范围、控制方式以及抗干扰能力等方面,都提出了越来越高的要求,尤其是采样速率,更是数据采集系统设计者和使用者最关心的一项重要指标。在电力系统自动化领域,实时数据采集是至关重要的环节,它直接影响整个自动化装置的性能。因此,提高采集速度和精度一直是电力系统软件开发人员要解决的难题。   2 系统结构   本文介绍的phcteeq-1型电力谐波综合治理实验装置的实时数据
[电源管理]
电力谐波治理装置<font color='red'>数据采集</font>处理系统设计
GPRS电力远程自动抄表系统应用方案
  随着工业 自动化 的发展,在原有的人工手动抄表中已经发展到远程智能抄表,通过现有的网络智能化的从远端把需要的数据采集到一起,那么,在很多必须无人值守的设备或监测点,不适合搭建有线通讯网络。若采用光纤或电台的方式实现无线通讯,不仅设备投入耗资巨大,而且不适应移动的需要。   随着新一代移动通讯业务的产生和全面投入,无线移动数据通讯的应用也越来越广泛。安全的数据传输和永远在线特点,配合按流量收费的资费方式,使GPRS通讯在工业控制、环境保护、道路交通、商务金融、移动办公、零售服务等行业中的应用具有无可比拟的性价比优势。采用GPRS无线通讯网络的移动IP通讯,既可独立作为数传通道,也可作为已经架设光纤、数传电台等方式的辅助手段。
[嵌入式]
基于USB总线的实时数据采集系统设计
现代工业生产和科学研究对数据采集的要求日益提高。目前比较通用的是在PC或工控机内安装数据采集板卡,如A/D卡及422、485卡。这些数据采集设备存在以下缺陷:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线(UNIversal Serial Bus,简称USB)是1995年康柏、微软、IBM、DEC等公司为了解决传统总线的不足推广的一种新型串行通信标准。该总线接口具有安装方便、高带宽、易扩展等优点,已经逐渐成为现代数据传输的发展趋势。基于USB的数据采集系统充分利用USB总线的上述优点,有效解决了传统数据采集系统的缺陷
[嵌入式]
带有红外接口的移动式温度数据采集仪的研制
    摘要: 介绍了基于单片机的移动式温度数据采集仪的硬件设计,串行红外接口的应用及用可视化编程工具VB6.0实现的WINDOWS界面的数据接收、处理软件。     关键词: 热电耦 温度测量 数据采集 红外串口通信 在电子工业中,随着整机集成度的提高和元器件的微型化、复杂化,在印制板上焊接元件时对各种焊接设备(波峰焊、回流焊、SMT等)内的温度工艺要求越来越高。这就需要一种可移动的温度数据采集仪器,能随传送带进入焊炉内,测量记录下不同焊点(印制板上的焊盘孔、过孔等)在焊炉内不同位置时的温度参数,并能将测量数据方便地传送给电脑,进行数据曲线的显示、分析和打印,以便制定和执行合适的工艺流程。 无线通信可以去
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved