一种用于高精度ADC片上测试的信号发生器

发布者:HarmoniousVibes最新更新时间:2011-06-16 关键字:高精度ADC  信号发生器 手机看文章 扫描二维码
随时随地手机看文章

0 引言
    随着工艺的进步以及深亚微米集成电路技术的不断发展,芯片的集成度越来越高,芯片的规模也越来越大。在无线通信、图像处理等各个芯片应用领域,越来越多的系统芯片(SoC)选择将各个功能不同的模拟电路模块和数字电路模块集成在同一芯片中,以便在整个系统的性能达到最优的同时使成本降到最低。但这却给芯片的测试带来了意想不到的困难,也使得测试成本大为增加。ADC作为连接数字系统和模拟系统的桥梁,其测试显得格外重要。随着ADC性能的不断提高,芯片外部环境也已经成为ADC测试的主要障碍。为了解决上述问题,同时更准确地测试ADC作为IP核集成到SoC中工作时的真实性能,各种ADC的内建自测试(Built-In-Self Test)方法应运而生,而如何精确而高效地为ADC内建自测试提供测试激励是一个非常关键的问题。本文提出一种可用于ADC片上测试的三角波信号发生器的实现方法,产生的三角波具有非常好的线性度,可以满足14 b高精度ADC的测试要求。整个设计采用UMC 0.18 μm CMOS工艺实现,电源电压为1.8 V。

1 三角波信号发生器的设计约束
   
码密度直方图测试法基于统计学,用该法对ADC的静态特性进行测试时所加的测试激励必须尽量接近理想,在本文中也就是要尽量获得精准的三角波。如果获得的三角波信号存在非线性或增益误差,则用该信号去测试一个理想的ADC,测得的码元的直方图分布就会不均匀(如图1所示),这种不均匀来自测试激励本身的误差,所以由此测得的ADC的积分非线性(INL)和微分非线性(DNL)就引入了误差。这样一来,测试结果的精确性很大程度上取决于所加三角波信号的精确度。所以,在设计三角波发生器时,必须根据被测ADC的性能指标来确定所需要的三角波发生器的线性度以及幅度。本文所设计的三角波信号发生器要满足精度为14 b的ADC的测试要求,那么其精度要求必须不低于16 b。



2 三角波信号发生器的原理
   
产生三角波信号的原理是用一个恒定不变的正向电流对电容进行充电得到一个均匀上升的斜波电压,当电压上升到一定值时再用一个恒定不变的负向电流对电容放电,从而得到一个均匀下降的斜波电压,交替用正负方向的电流对电容进行充放电,就可以得到连续的三角波电压信号,上升和下降的斜率由正负向电流与电容的比值I/C决定。为了满足ADC测试的要求,三角波信号应具有较好的线性度,同时也要保证较低的斜率,这就需要一个精确的小电流和一个较大的电容。
    图2描述了三角波信号发生器的原理。图中运算放大器、电阻R、电容C组成一个方波积分器;比较器、电阻R1、电阻R2组成一个迟滞比较器作为一个反馈控制电路。电路的工作过程如下:


    (1)当比较器输出电平为低电平VomL时,电容C处于充电状态,Vout不断上升,当Vout的值上升到使得比较器正相输入端电压高于Vref时,比较器输出翻转,输出高电平VomH,同时电流方向改变,电容C进入放电状态;
    (2)当比较器输出电平为高电平VomH时,电容C处于放电状态,Vout不断下降,当Vout的值下降到使得比较器正相输入端电压低于Vref时,比较器输出翻转,输出低电平VomL,同时电流方向也翻转,电容C进入充电状态;
    (3)如此循环振荡,便产生了周期的连续三角波电压信号。
    输出三角波电压信号Vout的阈值电压为:
             
    式中:Vref为比较器负端参考电压;VomH,VomL分别为比较器输出的高、低电平。
 
    由以上公式可知,周期T由RC常数、峰峰值Vout.pp以及比较器输出的高低电平VomH,VomL决定。

3 具体电路设计实现
3.1 运算放大器设计

    运算放大器是整个电路结构中的关键部分,它直接决定了三角波信号发生器的线性度和线性输出范围。运算放大器与电阻R、电容C构成积分电路,其主要作用是使积分电容C一端电平保持稳定,这就要求运放具有较高的增益;同时,为了使三角波信号发生器的线性输出范围尽可能大,要求运放具有较大的输出摆幅。[page]

    本文中运算放大器采用两级结构,如图3所示。其中:输入级采用带增益自举电路的套筒式共源共栅结构,包括主运放和辅助运放。主运放采用NMOS输入的套筒式共源共栅结构,具有高增益、低功耗以及良好的频率特性。辅助运放OP1,OP2分别为采用PMOS输入和NMOS输入的折叠式共源共栅全差分结构,进一步提高运放增益。第二级采用共源结构来改善套筒式共源共栅结构输出摆幅小的缺点,同时也能一定程度上提高运算放大器的开环增益。由于级数增加也会引入新的零极点,从而会影响运放的稳定性。所以,必须加入补偿电容C,使相位裕度满足要求。


    由Spectre仿真所得的运算放大器的交流幅频、相频特性如图4所示。表1总结了运算放大器的基本性能参数。


3.2 迟滞比较器设计
   
迟滞比较器的迟滞特性是比较器中引入正反馈的结果。迟滞比较器有两个输入阈值,当输入电压经过其中一个阈值时输出电压会改变,同时输入阈值会跳变到另一个值。要再次改变输出,输入必须到达跳变之后的阈值,在输出改变的同时,阈值又会跳变回原来的值。本文所采用的迟滞比较器电路及输入-输出特性曲线如图5所示。


    两个输入阈值分别为:
    
    迟滞比较器中的比较器电路采用两级开环运放实现,由于比较器后级是一个2 mΩ的电阻,所以必须使比较器输出级电阻足够低,以防止由于电阻分压而导致比较器输出电压达不到电源电压以及地电压。因此,在两级开环运放之后增加了一个大宽长比的反相器链以获得较低的输出电阻,如图6所示。[page]



4 仿真结果
   
对该三角波信号发生器整体电路进行晶体管级仿真,仿真得到的三角波电压信号范围为82 mV~1.719 V,周期为366μs,如图7所示。


     对该三角波信号进行多个周期的采样,利用16 b理想ADC分别对0.1~1.7 V,0.2~O.6 V,0.3~1. 5 V这三个不网的电压范围进行量化转换,并做相应的码密度直方图分析,得到各自的DNL和INL,如图8所示。从图8中可以看到,对于16 b理想ADC的量化,这三种不同的电压范围INL都在1 LSB以下(等价于INL<24μV),可以满足14 b ADC静态特性的测试。



5 结语
    本文设计了一款应用于高精度ADC片上测试的高精度高线性度模拟三角波信号发生器,可为高达14 b的ADC静态参数片上测试提供有效的激励。仿真结果表明,该信号发生器所生成的三角波电压信号范围为82 mV~1.719 V,周期为366μs,INL<24 μV,等效精度达到16b以上,其幅值和频率可根据具体的设计要求进行调节,而且其线性度表现良好,可满足14 b高精度ADC静态参数的测试需求。

 

关键字:高精度ADC  信号发生器 引用地址:一种用于高精度ADC片上测试的信号发生器

上一篇:利用MAX5060设计带无损电流检测的大电流电源
下一篇:超声波物体检测电路设计

推荐阅读最新更新时间:2024-03-30 22:15

设计基于matlab的信号发生器GUI界面(1)
用matlab设计UI界面,我也是最近开始接触,拿过学长的作品简单学习和膜拜后,开始上手只做自己的GUI界面。 这次界面是设计一个信号发生器。 制作界面前简单思考一下自己的面板怎么设计,最后决定使用在主界面中加入切换按钮,在主界面和不同信号发生器中来回切换。 我的matlab版本是2018b 1.主界面设计 在matlab窗口中输入guide,进入guide引导界面 选择一个自己喜欢的文件夹存放自己的UI界面。 点击确定后,matlab会生成一个xx.m文件和xx.fig文件,xx.fig文件是界面文件,xx.m文件是界面所对应的元件的代码文件。 我们需要首先对xx.m文件进行设计。 上图是新建的untitled1.f
[测试测量]
设计基于matlab的<font color='red'>信号发生器</font>GUI界面(1)
函数信号发生器的认识
信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发。   这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源
[测试测量]
基于AT89S51单片机的PWM专用信号发生器设计
1 引言       涡流无损检测作为无损检测应用最广泛的方法之一,具有传感器结构简单、灵敏度高、测量范围大、不受油污等介质影响、抗干扰能力强等优点,已被广泛应用于冶金、机械、化工、航空等多个工业部门。然而由于受趋肤效应的影响,常被限制在对导体表面及亚表面层的检测上,这使其检测应用范围受到了很大的限制。但是,若检测线圈在脉冲激励作用下,因脉冲信号中含有丰富、连续的频率成分,所以检测线圈中所得到的信息不仅包含了被检测试件的表面、亚表面信息,还包含其深度信息,能够对材质以及缺陷进行定量评价。而脉冲信号的波形、频率、幅值、占空比等参数的改变对检测结果有着不同的影响。因此为了获得不同的脉冲激励下的检测结果。特制作了这一专用高精度大
[单片机]
基于AT89S51单片机的PWM专用<font color='red'>信号发生器</font>设计
Keysight推出全新VXG矢量微波信号发生器M9384B
日前,是德科技(Keysight)宣布发布全新VXG矢量微波信号发生器M9384B,该产品旨在解决毫米波微波领域不断增长的测试需求,重点应用则包括了5G和卫星通信等毫米波领域。是德科技(中国)有限公司大中华区无线市场部经理白瑛具体解读了微波测试所遇到的痛点以及VXG系列产品特性。 白瑛表示,通信测试面临着与日俱增的挑战,包括调制越来越复杂,天线数目越来越多,带宽越来越大,频段也越来越高等需求。针对这些特性,需要一款有足够高的频段,足够高的带宽,支持Massive MIMO多天线以及更高的分辨率等多重需求。 为此,Keysight推出全新的矢量微波信号发生器M9384B VXG以及M9383B VXG-m紧凑型产品。
[测试测量]
Keysight推出全新VXG矢量微波<font color='red'>信号发生器</font>M9384B
信号硬件入门--振幅调制信号发生器(正弦波发生器方案、AM调制方案)
一、基于DXP的正弦波发生器原理图及PCB的设计(以下顶层线均为0Ω直插电阻) 图 3-1 500HZ和5KHZ正弦波发生器DXP原理图 图 3-2 500HZ和5KHZ正弦波发生器DXP PCB 图 二、基于DXP的AM调制器原理图及PCB的设计 1. MC1596乘法器 图 3-3 MC1596 AM调制器DXP原理图 图 3-4 MC1596 AM调制器DXP PCB 图 2. AD835乘法器 图 3-5 AD835 AM调制器DXP原理图 图 3-6 AD835 AM调制器DXP PCB 图 三、做出板子实物(分模块制作,便于 错误查清与调试) 图 3-7 振幅调制信号
[测试测量]
信号硬件入门--振幅调制<font color='red'>信号发生器</font>(正弦波发生器方案、AM调制方案)
信号发生器是如何定义的
凡是产生测试信号的仪器,统称为信号源。 也称为 信号发生器 ,它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。 信号源可以根据输出波形的不同,划分为正弦波 信号发生器 、矩形脉冲 信号发生器 、函
[测试测量]
信号发生器的作用和组成
在日常实验中信号发生器经常和功率放大器一起搭配使用,很多人都知道信号源,也就是信号发生器,但是对信号发生器的作用和组成都不太了解。安泰电子为大家带来信号发生器的科普常识,希望大家对信号发生器能够有所了解。 一、信号发生器的种类 信号发生器一般分为专用信号源和通用信号源两类,通用信号发生器常见的有:高频信号发生器,脉冲信号发生器,函数信号发生器和噪声信号发生器等。 二、信号发生器的工作 1、频率范围 2、频率的准确度和稳定度:准确度也就是相对误差,一般不大于±1%,稳定度应优于10^-3 3、线性失真和频谱纯度:低频信号源输出的波形用非线性失真表征,在在0.1%-1%的范围;而高频信号源输出的信号用频谱纯度表征 三、信号
[测试测量]
<font color='red'>信号发生器</font>的作用和组成
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved