分析仪选购疑问解答分析

发布者:脑洞狂想最新更新时间:2011-06-16 关键字:分析仪  选购疑问 手机看文章 扫描二维码
随时随地手机看文章

  目前,市场上有许多可供选择的分析仪,有些具备非常特殊的专业用途,有些则提供了较多的通用射频测量能力;有些被称为频谱分析仪,有些则被称为信号分析仪。这些分析仪都是用来测量和显示信号频率与幅度之间的关系的。如何在众多型号的分析仪中选择合适的一款需要多方面的考虑,本文将为您解答在挑选市场上各种分析仪时所遇到的疑问,并帮助您做出正确的选购决定。

  性价比分析

  分析仪的价格部分取决于它的成本。如果设计分析仪时采用低成本的组件,那么它的价格可能是比较诱人的。但是,通常情况下它的性能就会十分有限。性能取决于什么呢?混频器、LO放大器、模/数转换器、FPGA/ASIC和微处理器的选择都会影响到产品最终的成本和性能。举例来说,单回路局部振荡器的设计成本通常是比较划算的,但是,它却可能产生较大的相位噪声失真,导致无效的测量结果。另外,如果单从成本的角度,那么,便宜的微处理器似乎非常吸引人,但是如果把分析仪中所有的DSP都换用这种微处理器来进行解调工作,那么频谱分析仪的运行速度将变得非常慢。

  下面给出了一些在保持成本的前提下提高产品性能的新方法,通过这些方法可以很好地控制产品价格。

  ● 是否采用扫描方式:许多传统的分析仪厂商仍然使用扫描式体系架构。尽管这种架构非常适合于微波和毫米波频谱的分析,但是许多新型的射频分析仪不再采用这种传统的扫描式系统,而采用信号处理测量技术实现了类似的(多数情况下更好的)测量功能。带有频谱分析功能的吉时利2810型矢量信号分析仪就是这类新型产品中极好的一个例子。

  ● 测量速度:当购买分析仪时,您可能会问测量数据是如何处理的,有的仪器为了快速产生测量结果而采用了多个处理器,有的分析仪则采用FPGA或ASIC来进行测量,主处理器仅处理常规事务,还有一些仪器仅仅使用一个微处理器来完成所有的工作。显而易见,虽然最后一种方案对厂商来说是最节约成本的,但是它在处理比较复杂的调制信号时速度将慢得让人无法忍受。吉时利的2810采用了基于DSP IQ测量引擎的独特高速架构,为业界提供了高性能的测量产品。

  频率范围

  没有必要购买那些频率范围超出您所需要的分析仪。分析仪的频率范围是其价格的主要决定因素之一。大多数分析仪的频率范围在2.5GHz、6GHz、13GHz和26GHz左右。高性能的分析仪频率通常能达到50GHz。如果只是对无线通信产品或者工作在ISM波段的产品(例如802.11b/g无线局域网设备)进行测试,那么最高频率低于3GHz的分析仪通常是最划算的。

  载波(CW)测量

  让我们看一看图1中一种简化的频谱分布情况。图中有两个信号:一个是载波,另一个是较小的干扰信号。载波有许多特性,包括幅值、频率、相位噪声和宽带噪声。幅值是由设备在特定的频率下发出的频谱能量。相位噪声(表现为信号的边带特性)体现的是信号的稳定或纯净程度。通常,产品的局部振荡器会对信号的相位噪声产生影响。例如:在图1的左边能观察到一个干扰信号,即寄生信号。该信号可能是由紧邻的大功率发射器所引起的,也可能是从系统的其他部分产生的,例如来源于微处理器的时钟。

  

基本的信号特征

 

  图1 基本的信号特征

  幅值测量

  幅值测量的效果越好,结果就越可靠或可信。在选择分析仪时,我们不要局限于测量精度低于0.6dB或者频率低于3GHz的分析仪。

  噪声测量与低电平信号

  在测量噪声和/或低电平信号时,必须确保分析仪有前置放大器,而且还要考虑分析仪的测量架构。通常,分析低电平信号意味着要设定一个非常窄的信号范围。当在比较窄的范围内对多种分析仪的速度进行比较时,就会发现扫描式分析仪的速度是相当慢的,而采用了数字信号处理器的分析仪就不会出现这种问题。最后,您可能想在一定的带宽范围内给出噪声密度的测量结果。与其他分析仪只是将高斯成形滤波器的分辨带宽定义在3dB不同的是,吉时利的2810能够指定滤波器的噪声带宽,从而非常适合进行这种类型的测量。

  交调测量

  这种类型的测量主要测量的是特定的信号条件下分析仪或系统所产生的失真。通过图2我们可以看到仪器的激励是两个载波信号或双音信号。这个双音信号导致仪器产生失真,在频域内可以清楚地看到输入双音信号左右两边的两个失真产物。由于分析仪也是一个信号接收器,在其信号通路中包含有源器件,因此分析仪也可能会产生这种类型的失真,从而导致测量失效。验证信号完整性的一种简便方法是增加分析仪的衰减设置。如果在增加衰减时,信号幅值会减少,那么这个结果是由分析仪产生的;如果改变衰减值对信号幅值没有影响,那么测量就是有效的。当增加衰减值的时候,本底噪声电平也会增加同样大小的分贝值。这就是载波幅值在不同衰减水平下保持不变的原因。然而,本底噪声电平的增加可能意味着噪声信号掩盖了交调结果。

  

 双音信号(非线性放大器失真)

 

  图2 双音信号(非线性放大器失真)

  为了获得最佳的测量性能,微调衰减步长非常重要。大幅度的衰减步长只能够对本底噪声电平进行10dBs的调整,这样会很快掩盖掉待测信号。 [page]

在存在大信号的情况下对小信号进行测量是频谱分析仪的一个重要功能——这种性能特征也称为分析仪的动态量程。动态量程通常由三部分的组合来表示,即分析仪的三阶交调失真(如在前面讨论过的双音频测量)、仪器的本底噪声电平和相位噪声。一般来讲,对测试仪的动态量程直接进行比较是非常困难的,因为不同的制造商可能会分别针对仪器的本底噪声电平性能或失真性能进行优化。对不同分析仪的动态量程进行对比的一个简单方法就是检测分析仪的W-CDMA相邻信道功率。这种测量方法能够囊括上述所有的参数。

  调制信号

  到目前为止,我们只是讨论了载波(CW)信号。在测量已经经过调制的信号的时候,必须确保频谱/信号分析仪不仅能够测量信号的频谱,还能够衡量信号调制的质量。

  图3是频域内一个典型的数字调制数字信号示意图。这个信号采用了不固定功率包络的调制方式,因此其信号幅值是随着时间而变化的。分析仪必须实现的一种关键测量功能就是要能够给出这类信号的平均功率值,这通常需要指定一个确定的带宽。交调和相位噪声失真体现在信号的边带上。分析仪的相邻信道功率特征有助于量化待测设备的交调和相位噪声性能。

  

图3  调制信号

 

  图3 调制信号

  现代分析仪有两大关键功能需求:对信号进行解调以及用某种指标(如EVM,误差矢量幅度)来衡量信号质量。在分析仪中实现这类测量的关键性能特征包括仪器的数字化带宽和相应的频率与相位响应。举例来说,吉时利的2810能够捕获并且数字化处理带宽高达35MHz的信号。对于主流的调制方式,如GSM和W-CDMA,分析仪通常内置了信号解调功能和信号质量衡量指标。即便如此,分析仪的选择也应考虑到适应通信技术发展的需要。图4给出了吉时利2810用作校准式IQ采集引擎的情况。在该测量配置方案中,2810捕捉待测设备的信号,将其转换为IQ校准数据对,并存储在容量为50×106次采样的内存中。同时该分析仪还提供了数据记录的导出功能,可以将这些数据导入到其他商业分析软件中,如Matlab。这种灵活性能够满足通信技术不断发展的测量需求。

  

2810用作校准式IQ采集引擎

 

  图4 2810用作校准式IQ采集引擎

  分析仪的互连特性

  大多数现代分析仪都兼容LXI-C标准。LXI(LAN eXtension for Instrumentation,仪用扩展局域网)是在局域网上定义分析仪互连特性的一个标准。LXI标准有A、B、C 三个版本。C表示通过局域网来对分析仪进行控制,包含远程操作的Web服务。举例来说,如果您正在与世界上其他合作组织共享测量信息,您只需在网页浏览器中输入分析仪的IP地址,分析仪的显示器将出现在浏览器中。标准B和A仍然正在完善之中,它们提供了更多的高级测量功能,功能比标准C更强大。

  当然,现在大多数的分析仪仍然使用的是GPIB接口控制方案。在选择分析仪时,必须确保它能与以前使用GPIB接口的测试系统进行互连,同时还能够兼容未来的LXI C级标准。

  随着带LAN功能的分析仪的出现,Internet的安全和保障成了关键问题,特别是在大型企业系统中。举例来说,如果分析仪是基于Windows XP系统的,也就是说它具有一般PC的所有特性。当通过IT部门将其连入网络时,分析仪将像其他PC一样面临病毒和被攻击的威胁。因此,有些分析仪厂商转而选择Linux系统,但是这就影响了分析仪与基于Microsoft工具的互连性。吉时利的2810采用了Windows CE操作系统,这对于互连性和安全性是一个很好的折中。

  结论

  购买频谱或信号分析仪可能是一笔很大的投资,同时在市场中有多种分析仪可供选择。如果您在选购时认真考虑以下的问题,或许可以帮助做出正确的选择

 

 

关键字:分析仪  选购疑问 引用地址:分析仪选购疑问解答分析

上一篇:一种多用智能温度测量仪的设计与实现
下一篇:摇表的接线和使用方法及注意事项

推荐阅读最新更新时间:2024-03-30 22:15

矢量网络分析仪具有offset补偿功能详解
矢量网络分析仪具有offset补偿功能,是Calibration校准功能的延伸。其应用场景,是当校准过的接口附加探针、夹具或其它双端口网络时,对附加网络的损耗和延时参数的补偿修正。 下面由安泰网络分析仪维修中心分享网分的Offset功能,不涉及嵌入/去嵌修正功能,也不涉及In Situ De-Embedding (ISD)和Smart Fixture De-embedding (SFD)。 一、Offset功能实现方法 1、Auto Length 自动进行目标端口的反射时延测量,得到offset部分的传输延时修正值delay,量值与phase delay一致。 修正后的offset连接面Delay=0。 2、Auto Le
[测试测量]
矢量网络<font color='red'>分析仪</font>具有offset补偿功能详解
频谱分析仪的介绍及主要分类
现在频谱分析仪的应用在我们的生活中是非常广泛的,频谱分析仪的分类有很多,你对频谱分析仪的了解有多少呢,频谱分析仪都有哪些技术指标呢,今天就让小编为大家简单的介绍一下什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容
[测试测量]
网络特性虚拟分析仪
    摘要: 介绍一种扫频仪——兼有任意波形发生器和数字存储示波功能的虚拟仪器。可网时显示幅频特性、相频特性,还可显示采集的波形。在设计技术上,采用FPGA、EDA技术和VC++6.0Windows编程技术。     关键词: 完EDA ISP FPGA VHDL VC++ DLL 随着计算机技术、电子设计自动化(EDA)技术和在系统可编程技术(ISP)的广泛应用,使得虚拟仪器的设计列为灵活、测试更为方便,从而使虚拟世界更为丰富多彩。 虚拟仪器的设计包括硬件和软件部分。本系统的框图如图1所示。 1 系统硬件 由图1可看出硬件部分主要包括:EPP口、DDS(直接数字频率合成)、信号调理、鉴相及数据
[应用]
网络分析仪的原理详解
  现代网络分析仪已广泛在研发,生产中大量使用,网络分析仪被广泛地应用于分析各种不同部件,材料,电路,设备和系统。无论是在研发阶段为了优化模拟电路的设计,还是为了调试检测电子元器件,矢量网络分析仪都成为一种不可缺少的测量仪器。   在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术,流行度超过了标量网络分析仪。虽然网络分析理论已经存在了数十年,但是直到20世纪80年代早期第一台现代独立台式分析仪才诞生。在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能受限。   网络是一个被高频率使用的术语,有很多种现代的定义。就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个
[测试测量]
网络<font color='red'>分析仪</font>的原理详解
快速、高效:罗德与施瓦茨推出新一代电缆与天线分析仪—R&S Cable Rider ZPH
在安装和维护移动通信天线系统时,首先进行快速准确的单端口测量是至关重要的。网络运营商、元器件供应商和运维服务商都可使用R&S ZPH手持电缆与天线分析仪进行以上测量。由于具有很快的测量速度、直观的操作界面和很长的电池续航时间,它是这个领域的理想选择。下面就随测试测量小编一起来了解一下相关内容吧。 慕尼黑,2017年2月23日—R&S ZPH手持电缆与天线分析仪能帮助基站生产商和网络运营商高效地安装和维护数量稳步增加的移动通信天线系统。R&S ZPH测量速度指标优异,每个数据点的测量时间仅为0.3毫秒,明显快于其他同类仪器。R&S ZPH拥有市场上最快的开机速度和最短的预热时间,开机后一分钟即可进行快速测量。另外,温度和频率发生改
[测试测量]
基于Altera厂商的SignalTapII在线调试逻辑分析仪使用讲解
写在前面的话 在诸多数字系统设计书籍中,关于FPGA开发的基本流程,几乎都介绍到了嵌入式逻辑分析仪(或称之为虚拟逻辑分析仪)的相关知识,包括为什么要有这样的在线调试逻辑分析仪,它可以做什么,什么情况下使用,基于什么样的原理,有哪些逻辑分析仪等等。读者在知道了它的种种之后,存在脑袋中的很大疑问就是如何使用,那么本篇章梦翼师兄就将带领大家解开这些疑团,教给大家如何使用基于Altera厂商的SignalTapII对具体的工程进行在线调试。 背景知识 如果您是经验丰富的FPGA数字系统设计工程师或者已经掌握SignalTap II的原理或者更喜欢Follow Me直接动手操作,那么完全可以跳过这一小节。但是,梦翼师兄仍要照顾到FPGA
[测试测量]
基于Altera厂商的SignalTapII在线调试逻辑<font color='red'>分析仪</font>使用讲解
功率分析仪选型指南在这里!
  高效电机及高效电力变压器技术的发展,对功率测量准确度提出了越来越高的要求,GB/T1032-2012三相异步电动机试验方法中明确指出,用于高效电机试验功率测量的仪器仪表的准确度不得劣于0.2级。目前市场上的功率分析仪标称精度大多优于0.1%,甚至高达0.02%或0.01%,可是,这些功率分析仪真的能满足测试需要吗?   随着电力电子技术、计算机技术、微电子技术等的发展,变频器、逆变器、整流器、电子变压器及开关电源等高效功率变换装置在舰船电力推进、装甲电力牵引、电机、风机、水泵、风力发电、光伏发电、燃料电池、轨道交通、电动汽车、变频冰箱、变频空调、变频洗衣机、荧光灯、LED照明、数码产品、电源适配器等领域得到广泛应用。
[测试测量]
功率<font color='red'>分析仪</font>选型指南在这里!
基于Microchip的53100A相位噪声分析仪
Microchip的53100A相位噪声分析仪是一种非常高质量和高性能的工具(图1),可以测量射频源的幅度,相位和频率稳定性。它的测量范围很宽,介于1 MHz和200 MHz之间。分析仪可以在飞秒到几天的时间范围内绘制出被测设备的准确图片。它可以单独使用,也可以合并到ATE系统中并安装在机架平台上。得益于改进的设计和创新的电路改进,与以前的技术相比,53100A在可靠性和性能方面进行了几项改进。 技术特性 Microchip的众多目标之一是为设计人员设计和制造一种极其专业但价格合理的工具。实际上,Microchip 53100A分析仪具有高标准功能。它可以将计时技术结合到一个非常先进的测量工具中,从而以很高的精度表征基准。多亏
[测试测量]
基于Microchip的53100A相位噪声<font color='red'>分析仪</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved