基于ADC和FPGA脉冲信号测量设计

发布者:EtherealLove最新更新时间:2011-08-29 关键字:ADC  FPGA  脉冲信号测量 手机看文章 扫描二维码
随时随地手机看文章

  0引言

  测频和测脉宽现在有多种方法。通常基于MCU的信号参数测量,由于其MCU工作频率很低,所以能够达到的精度也比较低,而基于AD10200和FPGA的时域测量精度往往可达10 ns,频率测量精度在100 kHz以内。适应信号的脉宽范围在100 ns~1 ms之间;重复周期在0.05~100ms:频率在0.1 Hz~50 MHz。

  AD10200是高速采样芯片,其中内嵌变压器,因此采样电路外部不再需要变压器,使得电路设计更为简单;最低采样速率为105 MSPS,具有3.3 V或者5 V CMOS兼容输出电平,双通道12位采样,补码形式输出,每个通道功耗为0.850W。通常可应用于雷达中频信号接收机、相位组接收机、通信接收机、GPS抗干扰接收机等。

  StratixⅡ是Altera公司的中高端主流产品,该产品采用1.2 V、90 nm、9层信号走线,全铜SRAM工艺制造。StratixⅡ内嵌RAM块、DSP块、锁相环(PLL)和外部存储器接口,同时,StratixⅡ也增加了全新的逻辑结构一自适应逻辑模块(ALM),因而增加了动态相位对准(DPA)电路和对新的外部存储器接口的支持。AD芯片可以稳定工作在100 MHz,FPGA速度可高达几百MHz,故可保证系统的测量精度。

  1测量原理

  1.1时域测量原理

  时域测量包括脉宽(PW)测量和脉冲重复周期(Pri)测量,时域测量在FPGA中可利用数字化技术实现。AD的两路输入为两路正交中频信号。经过Cordic算法,即幅相解算之后获得幅度和相位信息,其中利用幅度信息测得时域参数,其原理图如图1所示。

  当脉冲信号进入FPGA后,将首先进行门限判定,以将不规则的脉冲信号进行整形并变为规则的脉冲信号。整形后,在脉冲信号上升沿启动脉宽计数器和重复周期计数器,而在该脉冲信号的下降沿锁存脉宽计数器并且在下个脉冲信号上升沿锁存重复周期计数器;由此即可得到脉宽和重复周期的量化值N和M,然后再通过工作时钟的计算,就可得出脉宽和重复周期。[page]

  1.2频域参数测量

  频域参数测量可由两路正交信号所携带的相位信息得到。对于输入正交采样I、Q两路序列,则可通过求反正切得到角度序列θ(n)=arctg(I(n/Q(n),但此时得到的角度序列是周期性分布在(0,2π)之间的,因此需对此角度进行解模糊,可将角度序列解为递增直线,然后按照如下公式进行解模糊,并得到新的角度序列φ(n):

  通过以上公式可以准确计算出脉内信号频率,从而达到测频的目的。

  2系统硬件电路设计

  基于AD10200和FPGA芯片EP2S30F48414的脉冲信号测量系统的硬件电路原理如图2所示。此系统的输入信号要求为两路正交信号,正交信号在基带数字信号处理中经常要用到,它可以通过多种方法来实现,如模拟器件下变频或者是数字正交下变频等技术。IQ两路正交信号的特点为幅度相仿,相位相差90度。AD采样芯片负责将模拟信号转换为数字信号;电源芯片用于为AD、FPGA和MAX232供电;晶振用于提供工作时钟,选择24.576 MHz晶振的原因是因为FPGA与计算机串口通信时还要实现一个模拟串口,而选用24.576 MHz可以刚好模拟出9600 bit/s的波特率,从而可减少误码率:外部复位可为FPGA提供外部复位信号。[page]

   MAX232是一个常用的电平转换芯片,可以将FPGA输出的LVTTL 3.3 V电平转换为串口电平,以便被计算机UART口所识别和接收。由以上芯片组成的系统工作频率为100 MHz,可实现快速、高精度地脉宽和频率测量。其中采样芯片和FPGA的硬件连接图如图3所示。

  3FPGA软件设计

  本系统中的时域参数测量和频域参数测量工作由FPGA担任,其输入为正交信号两路序列,输出分别为脉宽(PW)、重复周期(Pri)和频率(f)。FPGA中的数字信号处理流程如图4所示。

  图中,I(n)和Q(n)为两路正交信号序列;A (n)为幅度信息序列;为相位信息序列。

  两路正交信号I(n)和Q(n) 序列经过幅相解算后,即可得到幅度序列和相位序列。对于幅度序列,经过低通滤波和归一化,可得到规则脉冲,再按时域参数测量原理得到PW和Pri;对于相位序列,按照频率测量原理可得到频率f;然后将PW、Pri及f值存人双口RAM,再将所存数据通过模拟串口从FPGA的通用I/O口传出,经MAX232电平转换后输入到计算机串口中,最后通过上位机显示出来,以实现人机通信。

  4结束语

  本系统的输入信号要求为正交信号,通常可用于通信和雷达信号的后端数字信号处理。本系统采用相位差分算法来计算频率,运算简单,FPGA速度可以优化到200 M本系统利用了采样芯片和FPGA的高速性,从而实现了很高的测量精度和实时检测的目的;由于采用模拟串口进行传输,故其抗干扰性能较好。

关键字:ADC  FPGA  脉冲信号测量 引用地址:基于ADC和FPGA脉冲信号测量设计

上一篇:基于超声波传感器的无接触式空气测距方法
下一篇:使用NI PXI 及SCXI 硬件为医疗用血管支架建立测试系统

推荐阅读最新更新时间:2024-03-30 22:17

Synopsys推出最新版Synplify FPGA综合软件
亮点: - 容错并继续运行能力能显著减少设计提升阶段所要求的迭代次数 - 三重模组化冗余和纠错代码推理RAM降低了如单个事件混乱这样的软错误影响 - 借助Hamming-3编码的故障容忍和有限状态机实现,可带来更可靠的设计操作 - 改善后的综合算法确保更快的运行时间 加利福尼亚州山景城,2012年4月9日—全球领先的电子器件和系统设计、验证和制造软件及知识产权(IP)供应商新思科技公司(Synopsys, Inc., 纳斯达克股票市场代码:SNPS)日前宣布:推出其最新版的Synplify Pro® 和Synplify® Premier 现场可编程门阵列(FPGA)综合工具。Synplify 2012.03产
[嵌入式]
STM32 ADC的规则通道和注入通道有什么区别
STM32的每个ADC模块通过内部的模拟多路开关,可以切换到不同的输入通道并进行转换。STM32特别地加入了多种成组转换的模式,可以由程序设置好之后,对多个模拟通道自动地进行逐个地采样转换。 有2种划分转换组的方式:规则通道组和注入通道组。通常规则通道组中可以安排最多16个通道,而注入通道组可以安排最多4个通道。 在执行规则通道组扫描转换时,如有例外处理则可启用注入通道组的转换。 一个不太恰当的比喻是:规则通道组的转换好比是程序的正常执行,而注入通道组的转换则好比是程序正常执行之外的一个中断处理程序。 再举一个不一定使用的例子: 假如你在家里的院子内放了5个温度探头,室内放了3个温度探头;你需要时刻监视室
[单片机]
FPGA的宽带步进频率信号源设计
摘要: 介绍了基于FPGA和锁相频率合成器芯片ADF4350的宽带步进频率信号源的设计与实现方法。通过分析两种不同的实现方法,确定了以DDS输出的扫描频率控制锁相环鉴相参考频率的方法。该方法能有效结合二者优势,缩短频率的稳定时间,降低输出杂散。通过FPGA的控制、配置,产生了最佳性能的LS波段宽带步进频率信号,具有功耗低、集成度高、输出频率杂散抑制良好等特点。 关键词: 步进频率源;FPGA;ADF4350;DDS 引言 频率源是通信系统、雷达系统、仪器仪表等现代电子系统的核心部分之一,其性能的优劣直接影响到整个系统的稳定性,目前的频率合成方法有多种,其中,应用广泛的有直接数字频率合成技术(Direct Digital
[嵌入式]
<font color='red'>FPGA</font>的宽带步进频率信号源设计
ISE® 13设计套件 全面支持7系列FPGA【赛灵思】
2011 年 3 月11日,中国北京——赛灵思公司(Xilinx, Inc.)宣布推出 ISE® 13设计套件。这款屡获殊荣的设计工具和 IP 套件新增了许多增强特性,可以提高片上系统(SoC)设计团队的生产力,针对 Spartan®-6、Virtex®-6 和 7 系列 FPGA 以及行业领先的容量高达 200 万个逻辑单元的 Virtex-7 2000T 器件,加速实现真正的即插即用 IP。针对减少开发时间和成本,ISE 13设计套件引入了加速验证、支持 IP-XACT 的即插即用 IP以及全新的Team Design Flow,让多名工程师利用时序可重复功能同时开展工作,从而缩短设计周期。 由于赛灵思已经推出系统门
[嵌入式]
austriamicro新推出低功率ADC
austriamicrosystems新近推出AS1530/31系列全差分12位、8通道低功率模数转换器,部分参考电压为2.5V。AS1530/31系列适合电池供电产品和便携式数据采集系统使用,如远程传感器和笔式数字转换仪,该设备功率低,速率高(400ksps),有四个模拟输入模式,动态性能优异(SINAD大于70dB),它采用无铅TSSOP-20封装。 AS1530使用4.5V至5.5V电源,速度达400ksps时电流消耗仅为2.8mA。AS1531使用2.7V至3.6V电源,传输速率300ksps,电流消耗为2.2mA。它们的软件节电功能可将电流消耗降至0.4mA,进一步降低了功耗,当采样速率为10ksps,每个通道为27.
[新品]
Molex 宣布收购 BittWare公司
( 新加坡 – 2018 年5月29日) 电子解决方案领域全球领先的制造商 Molex 宣布收购 BittWare, Inc.,后者是一家全球领先的计算系统的提供商,专业提供现场可编程门阵列 (FPGA),产品可部署在数据中心的计算应用以及网络数据包的处理应用中。 Molex 高级副总裁 Tim Ruff 表示:“在众多最优秀FPGA 计算平台开发商中,BittWare 引入的板件等级的计算技术、集成系统和软件上的专业技术具有极大的广度,给人留下深刻的印象。” Molex 旗下公司 Interconnect Systems International 的总裁 Mark Gilliam 表示:“此次收购扩展了 Mole
[嵌入式]
Molex 宣布收购 BittWare公司
百度发布XPU:AI云计算加速芯片(基于FPGA,256核心)
△ 百度解释了FPGA上AI和数据分析工作负载的情况 刚刚在加州Hot Chips大会上,百度发布XPU,这是一款256核、基于FPGA的云计算加速芯片。合作伙伴是赛思灵(Xilinx)。百度也在这次的大会上,透露了关于这款芯片的更多架构方面的细节。 过去几年,百度在深度学习领域,尤其是基于GPU的深度学习领域取得了不错的进展。而且,百度也在开发被称作XPU的新处理器。 百度研究员欧阳剑表示,百度设计的芯片架构突出多样性,着重于计算密集型、基于规则的任务,同时确保效率、性能和灵活性的最大化。今天,他在Hot Chips大会上与来自FPGA厂商Xilinx的人士一同发布了XPU。 △ 百度去年宣布采用Xilinx Kinte
[嵌入式]
基于AD7543和FPGA的数/模转换电路设计
引 言 数/模转换(D/A)电路,是数字系统中常用的电路之一,其主要作用是把数字信号转换成模拟信号,通常是利用专用的数/模转换(D/A)芯片来实现的。AD7543是Analog Device公司生产的的12位数/模转换(D/A)芯片,它采用串行数据输入形式,即数字信号被一位一位地写入AD7543数/模转换(D/A)芯片中,因此,AD7543要与一个控制器配合使用才能发挥作用。常规的方法,是以CPU作为控制部件,通过软件编程的方式来控制AD7543,从而实现数/模转换功能的。软件实现法虽然简单,但必将会占用大量的CPU时间,削弱了CPU实时处理能力,降低了系统的可靠性。针对以上情况,在此设计了基于可编程逻辑器件(FPGA)数
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved