MCM高速电路布局布线设计的信号完整性分析

发布者:EnchantedDreams最新更新时间:2011-10-24 关键字:高速电路布局  信号完整性 手机看文章 扫描二维码
随时随地手机看文章

  随着集成电路工艺技术的发展,多芯片组件工作速度越来越高,高速信号的处理已成为MCM电路设计能否成功的关键。当时钟信号的上升沿或下降沿很小时,就会导致传输线效应,即出现信号完整性问题。

  本设计按照图1所示的MCM布局布线设计流程,以检测器电路为例,详细阐述了利用信号完整性分析工具进行MCM布局布线设计的方法。首先对封装零件库加以扩充,以满足具体电路布局布线设计的需要;然后利用APD(Advanced Package Designer)软件直接调用零件封装符号,完成电路初步的布局布线设计;最后结合反射、延时和电磁兼容等信号完整性仿真分析结果进行反复调整,改进后的电路布局布线减小了信号的反射,输入信号的相对延时不超过0.2ns,电磁干扰现象也得到了抑制,满足信号完整性要求。

                  MCM布局布线设计流程

  MCM布局布线的软件实现

  如上所述,MCM布局布线的实现包括电路原理图生成、扩充零件库及最终的布局布线完成和加工数据文件输出。APD Layout包括Padstack(*.pad)、Package Symbol(*.psm)、Mechanical Symbol(*.bsm)、Format Symbol (*.osm)和Shape Symbol(*.ssm)五种,MCM布局布线设计中,所有的布局都必须有正确的Library Packing。MCM设计软件自带封装库往往不能满足具体设计要求,只有扩充零件库后,才能直接调用零件进行布局布线设计及最终的工艺文件输出。首先利用Padstack Editor软件扩充零件库,然后对电路进行封装,并通过Concept HDL给APD软件导出电连接网表文件,最后完成电路布局布线。以检测器电路为例,其原理图主要部分如图2所示,图3为CCT(Spectra)布线后的形式。整个设计中,定义了16个Padstack和81个封装符号,进行251次调用Padstack和89次调用功能单元,其中共用到了251个元件封装符号引脚和229个功能单元引脚。

                      原理图主要部分

  需要注意的是,具体设计时,若利用Orcad进行电路前期设计,则必须将Orcad生成的文件转换为APD软件的mcm文件。但由于转换后的mcm文件存在类似brd的问题,因此,采用Concept HDL软件来导出网表文件,然后提取网线拓扑结构进行仿真。为减少仿真时间,采用分模块仿真方法。

  仿真分析

  IBIS模型

  Spectra Quest和其他电路分析软件一样,要得到精确的仿真结果,必须首先给电路元件提供精确的电气模型。Spectra Quest软件使用的是IBIS模型。IBIS(输入/输出缓冲信息规范)模型采用I/V和V/T表的形式来描述I/O单元和引脚的特性,是一种基于V /I曲线的对I/O BUFFER快速准确建模的方法。它提供一种标准的文件格式来记录如驱动器或接收器输出阻抗、上升/下降时间及输入负载等参数,这些参数由Spectra Quest来读取。IBIS模型具有信号完整性分析所需要的信息,非常适合做振荡和串扰等高频效应的计算与仿真。[page]

                  布局布线

  Spectra Quest内部的Sigxplorer接受IBIS模型,然后将其转换为独特的设计模型化语言DML,以完成复杂I/O结构的建模。而且,Sigxplorer中的Constraint Manager能够对仿真中使用的参数进行管理,并将其嵌入到后续布局布线约束条件中。

  反射分析

  反射即传输线上的回波,是由于阻抗的不连续而引起的。源端与负载端阻抗不匹配会引起线上的反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负;反之,反射电压为正。理想的情况是输出阻抗、传输线阻抗及负载阻抗均相等,此时,传输线的阻抗是连续的,不会发生任何反射。反射电压信号的幅值由源端反射系数rS和负载反射系数rL决定,分别如下式所示:

      反射电压信号的幅值

  式中,RS为源阻抗,Z0为传输线阻抗,RL为负载阻抗。若RL=Z0,则负载反射系数rL=0;若RS=Z0,则源端反射系数rS=0。

  解决传输线反射的关键是阻抗控制,阻抗匹配可以抑制传输线反射,主要有:并联端接、Thevenin等效并联端接、AC端接和串联端接法四种匹配端接方法。这里采用Thevenin等效并联端接法,对检测器电路输入部分阻抗进行控制,然后提取电路拓扑结构,分别仿真匹配端接前、后电路的传输特性。
   用频率为50MHz,占空比为0.5的Pulse信号作触发,图4和图5分别为利用Signoise工具仿真得到的匹配端接前、后的仿真波形。从图中可以看出,端接前,波形在上升沿有畸变发生,容易引起误操作。匹配端接有效地消除了信号的畸变,单调性很好,而且在上升沿拉升了原信号,提前进入电平切换,增加了信号的稳态时间,信号的上升沿也比较平稳。虽然在高电平的维持阶段有上过冲,但对信号确认没有影响,信号质量比较理想。另外,信号传输线长度对反射也有一定的影响。仿真发现,传输线较长时,出现了预示的反射现象,如图6所示;而传输线较短时,仿真波形和分析结果吻合得很好,如图7所示。表1为上述两种情况下的波形仿真参数。所以,布线长度不同,其处理方法也应不同。一般来说,走线长度小于2英寸,以集总参数的LC电路来处理;大于8英寸,则以分布参数的传输线电路来对待。

 

利用Signoise工具仿真得到的匹配端接前
  延时分析

  随着系统工作频率的升高,当信号上升沿或下降沿很陡时,布线延时不能再被忽略。它对信号的建立和保持起着至关重要的作用,甚至可能影响系统的时序,产生误操作,所以必须予以考虑。MCM高速电路设计要求存储芯片的相位偏差不能过大,因此驱动端到接收端的布线延时应大致相等。延时和信号线长度的关系如下式所示:

[page]

延时和信号线长度的关系

式中,e为介电常数,r为电阻率,w为线宽,l0为芯片之间的平均距离。由式(3)可以看出,信号线长度对传输质量影响很大,可能使信号在传输过程中产生畸变。信号传输质量随着线长的增加而变差,对于过长的信号线,应采用源端或终端匹配的方法来改善传输质量。利用信号完整性仿真工具,可以方便地模拟从驱动端到各芯片的延时,然后结合仿真结果对布局布线进行调整,以达到预定的要求。

  检测器的每个信号应尽可能保持同一传输延迟,这就要求布线时尽量保持长度一致,对于微弱的差别,可以根据仿真结果延长或缩短布线。完成布线以后,再利用Spectra Quest软件仿真输入信号的传输延迟,具体参数如表2所示。可以看出,其相对延时不超过0.2ns,仿真结果比较理想。

具体参数

  EMI分析

  以上在时域中分析了信号的反射和延时,除此之外,EMI(电磁干扰)也是高速电路设计的一个重要方面。

  电磁干扰包括过量的电磁辐射和对电磁辐射的敏感性两方面,工作频率太高、信号变化太快或布局布线不合理等都会引起电磁干扰效应。分别对改变布线策略,增加终端匹配前、后的检测器电路进行EMI仿真。图8为布局布线调整前的仿真波形,垂直条长度指信号在该频率的电磁辐射强度,横线指系统可承受的最大辐射强度。从图中可以看到,信号所产生的噪声从0延续到2GHz,范围很宽,而且每个频率的辐射强度不尽相同,某些频率的辐射强度超出了限制,即信号在该频率的电磁干扰已经超出系统所能承受的程度,应该采取措施降低其辐射水平。按照前述的方法进行阻抗控制,并尽量减小布线长度,重新仿真的结果如图9所示。可以看到,超过限制的频率波已降到横线以下,并且各频率点的辐射强度均有所下降,整个辐射强度都有所降低。这说明,对于传输信号,改变布线长度和增加适当的匹配端接网络,不仅改善了信号的传输特性,也降低了电磁辐射强度,提高了信号的质量。

重新仿真的结果

  结语

  高速电路设计时,首先利用精确的器件模型对系统功能进行信号完整性和EMI仿真分析,以此来确定电路的布局布线,然后再进行仿真,对布线网络加以改进,直至得到满意的布线结果。本设计主要对MCM布局布线设计技术,结合检测器封装实例,分别在时域和频域对MCM布局布线时的反射、延时和EMI等问题进行了仿真和分析,取得了较好的效果。

 

 

关键字:高速电路布局  信号完整性 引用地址:MCM高速电路布局布线设计的信号完整性分析

上一篇:数字化宽带测向系统中的相位差测量及误差分析
下一篇:A/D转换芯片的测试环境构成及测试方法

推荐阅读最新更新时间:2024-03-30 22:19

信号完整性分析基础系列之二十二—— 自定义二阶PLL
概述 本文介绍了自定义二阶PLL,说明了它如何正确应用于串行数据测量中以提高眼图和抖动测量精度。 抖动定义的是边沿的时序不确定性。为了确定串行数据信号边沿的时序不确定性,边沿需要和一个参考的时钟边沿进行比较。 对于大多数高速串行数据标准,参考时钟是内嵌在串行数据信号里的,在测试时需要从被测信号中恢复该时钟。恢复时钟的方法将直接影响到测量眼图的形状和抖动值大小。 当前一些串行数据标准不仅定义了测量抖动的标准方法,而且也定义了时钟恢复的标准方法。 低频信号边沿的变化可以通过PLL来进行跟踪,最终并没有反应在测量出的抖动上,因为它们被PLL有效地去除掉了。反之,那些没有被PLL去除的低频信号边沿变化就会被测量为抖动。因此,时钟恢复方
[测试测量]
<font color='red'>信号完整性</font>分析基础系列之二十二—— 自定义二阶PLL
信号完整性角度谈选择示波器
我们经常听到身边的硬件工程师们提到关于信号完整性的话题。 那么信号完整性具体是指什么呢? 信号完整性(Signal Integrity:简称SI),指信号线上的信号质量,是信号在电路中能以正确时序和电压做出响应的能力。 当电路中信号能以要求的时序、持续时间和电压幅度到达接收端时,该电路就有很好的信号完整性。信号完整性问题包括误触发、阻尼振荡、过冲、欠冲等,会造成时钟间歇振荡和数据出错。 设计环节中,信号完整性是必不可少的考虑因素,当然,在信号测试和调试环节,我们也应对信号完整性问题引起重视,否则会引起测量结果误差,影响工程师判断,调试和改进电路的方向。 在基础的电子信号测量中,我们通常会选用示波器来对信号进行测
[测试测量]
从<font color='red'>信号完整性</font>角度谈选择示波器
获得信号完整性的测量技术
TDR(时域反射)测量可以为一根电缆或 PCB(印制电路板)走线的信号完整性提供直接描述,以及分析 IC 的性能与故障。TDR 测量沿电缆或 PCB 走线发送一个快速脉冲,并显示返回的反射,用于表示阻抗的变化。阻抗变化可以非常强,如开路或短路情况,或者是数 fF 这么微小,如一个 PCB 过孔。该技术以 OTDR(光 TDR)形式,利用了电子系统中介电常数与光学系统中折射率之间的等效性这一特点。 TDR 的历史 上世纪30 年代晚期的工程师开始采用 TDR 测量土壤的介电常数与水分含量。今天,很多工程师仍然用这种技术作多种地理测量,如地震断层与桥梁“冲刷”,这是在快速河流下出现的危险情况,尤其是在冰冻条件下。流水从桥墩、埋藏
[测试测量]
获得<font color='red'>信号完整性</font>的测量技术
何时会遇到信号完整性问题
多年前,在我开始研究信号完整性问题时也曾经有过这样的疑问,随着对信号完整性理解的深入,便没有再仔细考虑。后来在产品开发过程中,朋友、同事经常向我提出这一问题。有些公司制作复杂电路板时,硬件总也调不通,于是找到我,当我解决了问题,并告诉他们,原因就在于没有处理好信号完整性设计,负责开发的硬件工程师也会提出同样的问题。他们通常的说法是:高速电路中会有问题,可是什么情况下必须进行专门的信号完整性设计?   不断的有人问我,我不得不作更深入的思考。说实话,这个问题很难回答,或者说他们这种问法很难回答。他们的意思可以解释为,速度高了就要考虑信号完整性,低速板不存在这个问题,那总要有个临界频率,这个频率是多少?有人曾提出过这样的论点,当外
[电源管理]
何时会遇到<font color='red'>信号完整性</font>问题
确保信号完整性的电路板设计准则
信号完整性 (SI) 问题解决得越早,设计的效率就越高,从而可避免在电路板设计完成之后才增加端接器件。 SI 设计规划的工具和资源不少,本文探索信号完整性的核心议题以及解决 SI 问题的几种方法,在此忽略设计过程的技术细节。   1 、 SI 问题的提出   随着 IC 输出开关速度的提高,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。即使过去你没有遇到 SI 问题,但是随着电路工作频率的提高,今后一定会遇到信号完整性问题。   信号完整性问题主要指信号的过冲和阻尼振荡现象,它们主要是 IC 驱动幅度和跳变时间的函数。也就是说,即使布线拓扑结构没有变化,只要芯片速度变得足够快,现有设计也将处于临界状态或者停止
[半导体设计/制造]
DDR总线信号完整性测试
上周五到客户处介绍DDR3信号完整性测试方案,惊讶之处是他们不仅不知道DDR3总线信号完整性测试要点,而且受某些供应商的引诱,准备购买2.5GHz的示波器来测试DDR3 1.33G总线。 商业市场上,我坚信诚实做事,踏实做事,细致做事,一定会带来长久的生意和回报,就像我们在华东的国防生意一样。 那么DDR总线的测试实际应该需要多少带宽的示波器(最小要求)? 因为Jedec规范没有给出最快的上升/下降时间,下表是基于芯片的分析和实际的情况得出的结果: 当正确选择示波器后,我们测试DDR3总线需要关注4点: 1. 探测 如何正确的探测是测试DDR3的难点所在。 针对嵌入式系统,建议在PCB设计过程中,做可测性设计,即规划好准
[测试测量]
DDR总线<font color='red'>信号完整性</font>测试
高速电路传输线效应和信号完整性问题分析
随着系统设计复杂性和集成度的大规模提高, 电子 系统设计师们正在从事100MHZ以上的 电路 设计, 总线 的工作频率也已经达到或者超过50MHZ,有一大部分甚至超过100MHZ。目前约80% 的设计的时钟频率超过50MHz,将近50% 以上的设计主频超过120MHz,有20%甚至超过500M。 当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路信号质量仿真已经成为电子系统设计师必须采取的设计手段。只有通过高速电路仿真和先进的物理设计软件,才能实现设计过程的可控性。 传输线效应 基于上述定义的传输线模型
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved