何时会遇到信号完整性问题

最新更新时间:2011-12-14来源: 互联网关键字:信号  完整性 手机看文章 扫描二维码
随时随地手机看文章

多年前,在我开始研究信号完整性问题时也曾经有过这样的疑问,随着对信号完整性理解的深入,便没有再仔细考虑。后来在产品开发过程中,朋友、同事经常向我提出这一问题。有些公司制作复杂电路板时,硬件总也调不通,于是找到我,当我解决了问题,并告诉他们,原因就在于没有处理好信号完整性设计,负责开发的硬件工程师也会提出同样的问题。他们通常的说法是:高速电路中会有问题,可是什么情况下必须进行专门的信号完整性设计?

  不断的有人问我,我不得不作更深入的思考。说实话,这个问题很难回答,或者说他们这种问法很难回答。他们的意思可以解释为,速度高了就要考虑信号完整性,低速板不存在这个问题,那总要有个临界频率,这个频率是多少?有人曾提出过这样的论点,当外部总线频率超过80MHz时,就要进行专门的分析设计,低于这一频率,不用考虑信号完整性问题。对这一论点,我不敢苟同。仔细分析,他们这种问法的背后是对信号完整性的一种误解。

  如果必须有一个答案的话,我想答案应该是:只要信号畸变到了无法容忍的程度就要考虑信号完整性问题。呵呵,看起来像是在胡说八道,不过这确实是能找到的最好的答案了。

  要想弄清这个问题,必须先了解信号完整性的实质到底是什么。产生信号完整性的原因很多,频率(值得推敲,暂且借用提问者的说法)只不过是其中的一个而已,怎么能单单用频率来强行地划分界线!顺便说一句,很多人说频率的影响,其实这个词很值得推敲。频率到底指的是哪个部分的频率?电路板上有主时钟频率,芯片内部主频,外部总线带宽,数字信号波形带宽,电磁辐射频率,影响信号完整性的频率到底指的是哪一个?问题根源在于信号上升时间。如果你不是很理解,可以到于博士信号完整性研究网学习。

  信号完整性最原始的含义应该是:信号是否能保持其应该具有的波形。很多因素都会导致信号波形的畸变,如果畸变较小,对于电路板不会产生影响,可是如果畸变很大,就可能影响电路的功能。系统频率(芯片内部主频以及外部频率)、电磁干扰、电源波纹噪声,数字器件开关噪声、系统热噪声等都会对信号产生影响,频率并不具有特殊的地位,你不能把所有的注意力都放在频率这个因素上。

  那么这里又会出现另一个问题,波形畸变多大,会对电路板功能产生影响。这没有确定统一的指标,和具体应用以及电路板的其他电气指标有关。对于数字信号而言,对畸变的容忍度较大。能有多大的容忍度,还要考虑电路板上的电源系统供电电压波纹有多大,系统的噪声余量有多大,所用器件对于信号建立时间和保持时间的要求是多少等等。对于模拟信号,相对比较敏感,容忍度较小,至于能容忍多大的畸变,和系统噪声,器件非线性特性,电源质量等等有关。

  是不是听起来很晦涩!确实,要说清楚这个问题并不容易,因为牵扯到了太多的因素在内。下面这个数字信号波形的例子能让你有一个简单直观的理解。

  

 

  这是一个受反射影响的方波数字信号,波形的畸变仅仅是反射的结果,没有迭加其他噪声。假设低电平逻辑小于0.7v,高电平大于2v。对于高电平来说,震荡的低谷部分可能会冲到2v以下,此时电路处于不定态,可能引起电路误动作。所以,迭加在高电平上的波纹幅度不能太大。由于电路存在噪声,电源也有波纹,这些最终都会迭加到信号波形上,所以你计算波纹幅度的时候要考虑这些因素,而这些因素和你的电路板其他部分设计有关。所以你无法确定一个统一的畸变标准,只能根据你具体电路的设计和应用综合考虑。最终的原则只有一个:通过信号完整性设计、电源完整完整性设计等手段,将总的信号畸变控制在一定范围内,保证电路板正常稳定工作。

  工程中,解决信号完整性的问题是一个系统的工程,并不是一两种方法就可以包打天下的。什么时候会碰到信号完整性问题也不是可以硬性的划一道线来区分,一句话,要根据你的实际情况来定。

  可能你会感觉,这么多不确定的因素,还怎么在最初设计的时候考虑信号完整性问题?嗯,没问题的,其实对于所有影响信号质量的因素,你都可以通过一定的设计技术来控制。对于电源波纹问题,那是电源完整性的问题,又是一个系统的工程。而其他的电磁干扰,电磁兼容等则是另外一个系统工程。

  总之,信号完整性问题涉及的知识较多,是一个跨学科的知识体系。网上关于信号完整性基础知识讲解很多,但很少有讲得很深入的。要想学好信号完整性,你需要有一定的精力投入,但可以告诉你,只要掌握学习方法,其实不难。一旦你学好它,回报是非常高的,毕竟这方面的人才现在是奇缺阿,很多公司给信号完整性工程师开价都在25W以上,如果你很牛的话,呵呵,决不是这个价。

  好了,废话就不多说了。对于信号完整性技术问题,我会在于博士信号完整性研究网的博士讲坛栏目进行深入探讨。

关键字:信号  完整性 编辑:神话 引用地址:何时会遇到信号完整性问题

上一篇:信号完整性中信号上升时间与带宽研究
下一篇:为什么要重视电源噪声

推荐阅读最新更新时间:2023-10-13 10:55

频谱仪矢量信号分析的应用
引言   随着现代频谱仪数字中频处理技术的发展和应用,使其在通信、航天、计量以及军工各个领域中的使用愈加广泛。不仅使数字信号解调成为可能,并且为模拟调制信号的解调提供的更优秀的方法。同时,对于发射机和频综源的频率及相位稳定时间,也可以进行精确的分析。 信号的矢量表述方法   理解信号的矢量表达以及IQ信号的概念,是现代频谱分析和信号分析理解和应用的基础。作为一个图解工具,矢量是一个直角坐标系中的旋转的箭头。箭头的长度代表信号的峰值幅度。逆时针旋转方向为正方向。箭头与横轴正半轴的夹角为相位。信号周期对应于箭头旋转一周的时间。信号每秒钟完成旋转的次数对应于信号频率。 信号矢量在纵轴上的投影长度等于信号的峰值幅
[测试测量]
频谱仪矢量<font color='red'>信号</font>分析的应用
基于DSP和FPGA技术的低信噪比雷达信号检测
  我国目前的海事雷达大多为进口雷达,有效探测距离小,在信噪比降为3 dB时已经无法识别信号。随着微电子技术的迅猛发展,高速A/D(模拟/数字转换)和高速数字信号处理器件(Digital Signal Proeessors,DSP)、高速现场可编程逻辑器件(Field ProgrammableGate Array,FPGA)的出现,可以在不增加现有雷达发射功率和接收灵敏度的前提下,在信噪比降为3 dB时能测到雷达信号,使雷达的有效作用距离提高。本文主要介绍基于DSP和FPGA技术的低信噪比情况下雷达信号的检测。   1 设计思想   本技术的设计思想主要是通过对接收到的雷达信号进行高速A/D采样,然后利用DSP和FP
[嵌入式]
将同步信号添加到标清视频信号的通道设计方案
  有些视频应用中,信号源输出RGB信号以及复合同步信号,RGB信号本身不包括视频同步。在接收器端,一些低成本视频解码器没有单独的复合同步输入,它们只接受视频信号本身的同步头。因此,在这种应用中需要把同步信号添加到绿色通道,提供一个“绿色同步”电路。   本文介绍了一种简单的低成本方案,将复合同步添加到标清视频信号的绿色通道。图1所示电路采用MAX9589将复合同步信号添加到绿色通道,在每个输出端生成标准的RGB信号。例如,考虑到具有75Ω终端电阻的视频信号源具有0.7VP-P的绿色信号输入和0.3V的复合同步信号,图1中,MAX9589之后的绿色通道输出信号为1VP-P。对于信号源产生的0.7VP-P R、B输入信号,经过MA
[安防电子]
将同步<font color='red'>信号</font>添加到标清视频<font color='red'>信号</font>的通道设计方案
采用吉时利DMM7510七位半触屏数字化采样万用表精确测量微小电流信号
功率管理是物联网设计中最为关注的问题,精确测量电流便是其中尤为重要的一项。 因为与物联网相关的低功耗器件,功率消耗的速率不尽相同,在几微秒到几秒的时间内可能会消耗几皮安到几安的电流。那么,如何精确测量闭合电流环路中微安级、纳安级微小电流信号呢? 吉时利DMM7510七位半触屏数字化采样万用表能同时提供智能设备或传感器各种应用汇总必需的低电流量程、分辨率和速度功能。DMM7510采用18位模数转换器,提供了100pA~10A的电流测量范围以及100kHz模拟带宽,让它既可测睡眠电流又能测活动电流。 测睡眠电流 低功率便携式产品的微控制器 (MCU) 和其他组件的睡眠模式漏电流可能只有几十纳安。整个产品的睡眠模式状态漏
[测试测量]
采用吉时利DMM7510七位半触屏数字化采样万用表精确测量微小电流<font color='red'>信号</font>
技术文章—基于泰克MSO64的全新时频域信号分析技术
与示波器传统的FFT测试频谱方法相比,Spectrum View具有独到的优势,那么性能优异的Spectrum View主要用于哪些场景呢?这是本文将重点介绍的内容。 本文将以泰克新一代示波器MSO64为实例来讲解时频域信号分析技术。MSO64采用全新TEK049平台,不仅实现了4通道同时打开时25GS/s的高采样率,而且实现了12-bit高垂直分辨率。同时,由于采用了新型低噪声前端放大ASIC—TEK061,大大降低了噪声水平,在1mv/div时,实测的本底噪声RSM值只有58uV,远远低于市场同类示波器。这些特性都是MSO64频谱模式——Spectrum View获得高动态、低噪底的强有力保证。 图1. MSO
[测试测量]
技术文章—基于泰克MSO64的全新时频域<font color='red'>信号</font>分析技术
基于MSP430单片机和CH376USB接口的信号采集存储系统
摘要:给出了一种基于CH376实现MSP430单片机对实验室小型天线信号采集存储的系统。由于工程测试的需要设计开发了天线方向图自动测试系统。该系统以MSP430单片机为核心,由自动控制模块、信号采集和数据显示模块和USB主机方式数据存储模块三部分组成。从实验结果采看,该系统能够实现转台的自动控制、信号的自动采集、天线方向图的自动绘制和数据实时存储到U盘。测试平台搭建方便,具有测试速度快、精度高、性能稳定的特点。 在现代控制系统中,经常需要在操作现场进行数据采集,以及对数据进行处理来实现现场控制,但是由于单片机数据存贮容量和数据处理能力都较低,因此本文主要介绍了使用USB总线通用接口芯片CH376和16位单片机MSP430对天线
[单片机]
基于MSP430单片机和CH376USB接口的<font color='red'>信号</font>采集存储系统
星座图聚类分析的QAM信号调制识别算法及DSP实现
星座图聚类分析的QAM信号调制识别算法及DSP实现 本文首先讨论基于信号星座图聚类分析的QAM信号识别算法,接着对TS201芯片进行了简介,最后在给出了DSP程序开发流程的基础上,利用TS201芯片完成了算法DSP实现。 QAM(Quadrature Amplitude Modulation)正交幅度调制是移动通信领域中常用的调制方式,它是用两个独立的基带数字信号对两个相互正交的同频载波进行抑制载波的双边带调制,并利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。由于QAM调制方式的广泛应用,使得对QAM信号的调制识别研究具有很现实的意义。 ADSP TS201芯片是AD公
[嵌入式]
星座图聚类分析的QAM<font color='red'>信号</font>调制识别算法及DSP实现
重新审视PCB概念 扩展DFM市场
  目前EDA产业的发展方向是可让设计人员进行整套系统的设计,而不是仅止于设计具有不同实体特性的系统组件;这种趋势从Apache公司收购Optimal公司之举即可看出端倪。同时,经由该领域的一连串合并与收购,针对印刷电路板(PCB)应用的EDA市场在过去几年中已渐趋成熟。   印刷电路板(PCB)设计是EDA产业的先驱公司所开发出的第一款应用。原理图设计的撷取则是与专有工作站搭售的首款应用,接着就是Calma和Computervision公司针对IC布局应用所开发的蓝图设计工具。其后是PCB布局工具,另一个主要进步便是使得电路原理图和布局应用开始共享设计数据库。   制造工艺的进步使得PCB尺寸不断缩小,对运行速度和功
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved