用数字荧光示波器对开关电源功率损耗进行精确分析

发布者:MysticDreamer最新更新时间:2011-11-19 关键字:数字荧光示波器  开关电源  功率损耗 手机看文章 扫描二维码
随时随地手机看文章

    随着电子产品对开关电源需求不断增长,下一代开关电源的功率损耗测量分析也越来越重要。本文介绍如何将数字荧光示波器和功率测量软件结合起来,迅速测定开关电源的功率损耗,并轻松地完成各项所需的测量和分析任务。图1:开关内部电路示意图。

    高速GHz级处理器需要新型开关电源(SMPS)提供高电流和低电压,这给电源设计人员在效率、功率密度、可靠性和成本等方面增加了新的压力。为了在设计中考虑这些需求,设计人员纷纷采用同步整流技术、有源功率滤波校正和提高开关频率等新型体系结构,但这些技术也随之带来了一些新的难题,如开关上较高的功率损耗、热耗散和过度的EMI/EMC等。

    从“关”(导通)至“开”(关断)状态转换期间,电源会出现较高的功率损耗;而处于“开”或“关”状态之中开关功率损耗则较少,因为通过电源的电流或电源上的电压很小。电感器和变压器可隔离输出电压并平滑负载电流,但电感器和变压器也易受开关频率的影响,从而导致功率耗散和偶尔由于饱和而造成故障。

功率损耗分析

    由于开关电源内部消耗的功率决定了电源热效应的总体效率,所以测定开关装置和电感器/变压器的功率损耗是一项极为重要的测量工作,它可测定功率效率和热耗散。

        设计人员在精确测量和分析各种设备的瞬时功率损耗时,会面临下面一些困难:

  • 需要测试装置对功率损耗进行精确测量
  • 如何校正电压和电流探头传导延迟所造成的误差
  • 如何计算非周期性开关变化的功率损耗
  • 如何分析负载动态变化期间的功率损耗
  • 如何计算电感器或变压器的磁芯损耗

测试装置

    图2:电压和电流信号的传导延迟及利用功率测量分析软件进行“自动偏移校正”后的情形。图1为开关变换简化电路图,MOSFET场效应功率晶体管在40kHz时钟激励下控制着电流。图中的MOSFET没有与AC 馈电线接地或电路输出接地的连接,即与地隔离,因此无法用示波器进行简单的接地参考电压测量。因为若把探头的接地导线连接在MOSFET任何端子上,都会使该点通过示波器与地短路。

    在这种情况下,差分测量是测量MOSFET电压波形的最好方法。通过差分测量,可测定VDS即MOSFET漏极和源极的电压。VDS可在电压之上浮动,电压范围为几十伏至几百伏,这取决于电源的电压范围。可通过下面几种方法测量VDS:

1. 悬浮示波器的机箱地线。建议不要使用,因为这样不安全,对用户、被测设备和示波器都有危险。


2. 使用两个常规单端无源探头,将其接地导线连接在一起,然后用示波器的通道计算功能进行测量。这种测量法叫做准差分测量,虽然无源探头可与示波器的放大器结合使用,但缺少避免共模电压“共模抑制比”(CMRR)功能。这种设置不能准确测量电压,不过可使用已有的探头,不必购买新配件。


3. 购买一个探头隔离器隔离示波器机箱接地。探头接地导线将不再为接地电位,并可将探头与测试点直接连接。探头隔离器是一种有效的解决方案,但比较昂贵,其成本是差分探头的二至五倍。

4. 在宽带示波器上使用真正的差分探头。可通过差分探头精确地测量VDS,这也是最好的方法。图3:开关电源在导通时的最小、最大和平均功率损耗。

    通过MOSFET进行电流测量时,先将电流探头夹好,然后微调测量系统,许多差分探头都装有内置的直流偏移微调电容器。关闭被测设备,待示波器和探头完全预热后,可设定示波器测量电压和电流波形的平均值。敏感度设置应使用实际测量所用的数值,在没有信号的情况下,调整微调电容器,将每个波形的零位平均值调至0V。这一步骤可最大限度减少因测量系统内的静态电压和电流而导致的测量误差。

校正传导延迟误差

    在开关电源内进行功率损耗测量之前,应先同步电压和电流信号,以消除传导延迟,这一点很重要,该过程称作“偏移校正”。传统方法是先计算电压和电流信号之间的时滞,然后再以手动方式通过示波器的偏移校正范围调整时滞。但这是一个非常冗长乏味的过程。

    一个较简单的方法是采用一种偏移校正夹具并选择合适的示波器,如TDS5000系列示波器。进行偏移校正时,将差分电压探头和电流探头连接到偏移校正夹具的测试点上,偏移校正夹具由示波器的Auxiliary输出或Cal-out信号激励,如果需要还可用外部信号源激励偏移校正夹具。

    另外在示波器上还可使用相应的测量软件,利用其偏移校正能力自动设置示波器并计算由于探接造成的传导延迟。偏移校正功能随后可使用示波器偏移校正范围,对时滞进行自动补偿,测试设置准备好后就可开始进行精确测量了。图2显示了偏移校正之前和之后的电流和电压信号。

非周期性开关信号功率损耗

    如果发射极或漏极有接地,测量动态开关参数则较为简单,但需在浮动电压上测量差动电压。若要精确测定并测量差动开关信号,最好使用差分探头,可通过霍尔效应电流探头查看穿过开关的电流而无需干扰电路本身,此时也可用测量软件的自动偏移校正功能去除上述传导延迟。图4:HiPower Finder功能查找结果:开关装置负载变化时的功率波形。

    测量软件的“开关损耗”功能可自动计算功率波形,并根据采集的数据测量开关的最小、最大和平均功率损耗,在分析开关功耗时,这些数据非常有用。如图3所示,数据显示为Turn on Loss、Turn off Loss和Power Loss。如果知道了接通和断开时的功率损耗,便可着手解决电压和电流跃迁,以减少功耗。

    在负载变化期间,SMPS的控制回路将变换开关频率以驱动输出负载。请注意,当负载转换时,开关装置的功耗也随之变化,所产生的功率波形将是非周期性的。分析非周期性功率波形是一件很枯燥的任务,不过测量软件的高级测量功能可自动计算最小功率损耗、最大功率损耗和平均功率损耗,为用户提供开关电源的相关信息。

负载动态变化功耗分析

    在实际运行环境中,电源装置会连续发生动态负载变化,所以测量中很重要的一步是要捕获整个负载变化事件,并对开关损耗进行测定,以确保电源装置不会因这些原因而过载。

    当今大部分设计人员都采用具有深度存储(2MB)和高取样率的示波器,按要求的分辨率捕获事件。但随之而生的难题,是如何分析在各开关损耗点上所生成的大量数据,这时也可利用测量软件加以解决,图4是在开关电源上通过测量软件获得的典型功率波形结果。

    在图中可以看到捕获数据中的开关事件次数和开关损耗最大值/最小值,此时用户可输入感兴趣的范围,以此查看所需的开关损耗点。只需在范围内选择感兴趣的点,软件便可在深度存储数据内查找该点,找到后在光标位置周围放大,以详细观察其活动。该功能加上前面提及的开关损耗测量功能可使用户迅速有效地分析开关装置的功率耗散情况。

电磁元件的功率损耗

    另一种减少功率损耗的方法与磁芯有关。从典型AC/DC和DC/DC线路图来看,电感器和变压器是耗散功率的其它组件,不仅会影响功率效率,而且可造成热耗散。图5:捕获波形的瞬时B-H图,用以显示光标链接。

    电感器的测试通常采用LCR计,它使用正弦波作为测试信号。但在开关电源里,电感器加载的是高压高电流开关信号,都不是正弦信号,因此电源设计人员需监测实际通电的电感器或变压器特性,此时用LCR计进行的测试可能无法反映实际情况。

    观察磁芯特征最有效方法是通过B-H曲线,因为B-H曲线能迅速揭示电源内电感器的特性。在电源接通和稳态期间,电感器和变压器表现出不同的行为特征。在过去,若想查看和分析B-H特征,设计人员须先捕获信号,然后在个人电脑上作进一步的分析,而现在可通过测量软件直接在示波器上进行B-H分析,即时观察电感器行为特征。在做深入分析时,该软件还可在示波器上提供B-H图和捕获数据间的光标链接(图5)。

    B-H分析能力还可在实际SMPS环境中自动测量功率损耗和电感器值。若需推导电感器或变压器的磁芯损耗,可在主磁芯及次磁芯上进行功率损耗测量,结果之差就是磁芯的功率损耗(磁芯损耗)。另外在无负载情况下,主磁芯功率损耗是次磁芯包括磁芯损耗在内的总功率损耗,这些测量值可进一步揭示功率耗散区的信息。

作者:Godfree Coelho


技术营销经理Tektronix

关键字:数字荧光示波器  开关电源  功率损耗 引用地址:用数字荧光示波器对开关电源功率损耗进行精确分析

上一篇:利用示波器分析CDMA射频无线信号
下一篇:EN61000-3-2电流谐波质量标准的兼容性测试

推荐阅读最新更新时间:2024-03-30 22:20

如何看待开关电源中高频磁性组件设计常见错误概念辨析
  很多 电源 工程师对开关电源中高频磁性组件的设计存在错误的概念,其设计出来的高频磁性组件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。基于开关电源及高频磁性组件设计经验,对一些概念性错误进行了辨析,希望能给大家提供借鉴,顺利完成高频磁性组件的设计以及整个项目的研制。   引言   开关电源中高频磁性组件的设计对于电路的正常工作和各项性能指针的实现非常关键。加之高频磁性组件设计包括很多细节知识点,而这些细节内容很难被一本或几本所谓的“设计大全”一一罗列清楚 。为了优化设计高频磁性组件,必须根据应用场合,综合考虑多个设计变量,反复计算调整。正由于此,高频磁性组件设计一直是令初涉电源领域的设计人员头疼的难题,乃至是困扰有
[电源管理]
从构思到实践--如何完成开关电源的合理设计
   开关电源 已经成为了我们电路设计当中的主角,甚至可以说已经成为了与行业发展密不可分的一部分。与传统线性电源相比,在某一输出功率点上线性电源的成本要高于 开关电源 ,常见的 开关电源 可以分为两种,隔离与非隔离。   在本篇文章当中,我们将主要对隔离式开关电源的拓扑形式进行探讨。所以在下面的文章当中,如果没有任何特殊的说明,文中提及的电源将均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能
[电源管理]
几种数字卫星接收机开关电源典型故障检修
下面列举的典型故障检修供维修人员参考。 开机,指示灯不亮,无屏显 检修:拆开机壳观察,未见元件烧焦、电容爆裂现象。仅2A保险烧断。用万用表R×1挡,测量桥式整流二极管在路反向电阻时发现,D1只有18Ω,D3更小,证明已击穿。拆下D1、D3,再没D2、D4反向电阻无穷大,正向电阻18Ω,说明未烧坏。用黑笔接热地点,红笔测A点,正常应为200Ω左右,但测得正反向电阻均为23Ω。怀疑是U1击穿,直接测U1 c、e极正反向电阻,竟然只有16Ω。证明U1短路。拆下U1,再测U2等元件未见异常。交D1、D3、U1换新后,整机恢复工作。 U1型号为2SC5027,属NPN型中功率电源管,找不到同型号管时,可用BVceo=500V~1000
[电源管理]
开关电源测试规范详解
  第一部分:电源指标的概念、定义 一.描述输入电压影响输出电压的几个指标形式 1. 绝对稳压系数: A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0 与输入电网变化量△Ui 之比。即:K=△U0/△Ui B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo 的相对变化量△Uo 与输出电网Ui的相对变化量△Ui 之比。即:S=△Uo/Uo /△Ui/Ui 2. 电网调整率: 它表示输入电网电压由额定值变化±10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 3. 电压稳定度: 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo
[电源管理]
<font color='red'>开关电源</font>测试规范详解
一种基于UC3842应用电路的设计与实现
开关稳压电源由于具有功耗小,效率高,体重轻等优点,所以在电子电力技术领域中占有重要地位。开关稳压电源主要由脉冲宽度调(PWM)制控制芯片、MOSFET/IGBT和变压器构成,通过PWM控制开关管通断的时间比率来稳定电源电压输出。UC3842作为国内广泛应用的电源芯片,具有管脚少、外围电路简单等优点。本文结合该芯片特点设计出保护电路、反馈电路和开关管外围电路等,同时提出PCB布局上应注意的问题以及相关建议,最后通过实验验证了电路多路输出的可行性。 1、UC3842内部结构及应用电路图 如图1所示为UC3842内部组成框图。1引脚为内部误差放大器输出端口,此引脚与2引脚形成反馈网络,使误差放大器补偿产生稳定的闭环转换器响应和较
[电源管理]
开关电源的高性能电压型PWM比较器设计
引言   随着科学技术的迅猛发展,电器设备日新月异,趋向小型化、低功耗、高效率,使开关电源需求日益增大,对电源的要求越来越高。   开关电源采用功率半导体器件作为开关,通过PWM控制开关的占空比来调整输出电压。根据定频控制方式分为电压型和电流型PWM控制,由于电压型PWM控制方式具有结构简单、易于实现等优点被广泛应用。图1所示是电压控制型开关电源的原理图,其中虚框部分是控制芯片内部结构。     图1 电压控制模式开关电源工作原理图   从图中可以看出,控制芯片有一个采用PWM调制法的电压闭环反馈,将电压误差放大器放大后的直流信号与恒定频率的三角斜波进行比较。根据脉宽度冲调制原理,得到需要的一定占空比脉冲宽度,
[电源管理]
<font color='red'>开关电源</font>的高性能电压型PWM比较器设计
不只是一台示波器!电源分析插件你真的会用了吗?
开关电源的质量直接影响到产品的技术性能以及其安全性和可靠性。电源测试项目多,计算量大,统计繁琐等问题一直困扰着工程师们,为了解决这些问题,今天就带您走进开关电源测试的新世界。 示波器电源测试分析主要实现使用示波器来对电源(开关电源)进行相关测试,提高电源开发人员的工作效率,方便对电源模块进行测试。主要涉及开关电源(AC/DC)有关测试。在大多数现代系统中,流行的DC电源结构是开关电源(SMPS),这种电源因能够高效处理负载变化而闻名。 典型SMPS的电源信号路径包括无源元件、有源元件和磁性元件。SMPS最大限度地减少了有损耗的元件的使用量,如电阻器和线性模式晶体管,重点采用(在理想条件下)没有损耗的元件,如开关式晶体管、电
[测试测量]
不只是一台<font color='red'>示波器</font>!电源分析插件你真的会用了吗?
一种简洁的高效率开关电源的设计
全球 能源 价格的不断上涨,使得各行各业不得不认真考虑节能的问题。在各种节能方法中,提高开关电源的效率是一个重要手段,美国自提出80PLUS计划后又推出85PLUS、88PLUS计划,并且在短期内实施。因此,尽可能提高开关电源的效率是电源行业不断追求的目标。 要想提高开关电源效率,首先要清楚影响开关电源的因素。一般来说,反激式及其衍生 电路 的效率最低,多极变换 电路 拓扑的效率低于单级变换。因此,在应用中应尽可能不采用上述电路拓扑。 对于正激式功率变换来说,占空比越大相对效率就越高,因此在实际设计中应选择尽可能大的占空比,如果占空比接近1则是最理想的。 输入电压变化范围大的开关电源要比输入电压变化范围小的效率低。避免输入电
[电源管理]
一种简洁的高效率<font color='red'>开关电源</font>的设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved