测试系统的开关构造

发布者:JoyfulExplorer最新更新时间:2011-12-29 关键字:测试系统  开关构造 手机看文章 扫描二维码
随时随地手机看文章
  测试系统往往用少量的仪器测量大量信号。这种设计方法制约成本,而且限制测试吞吐量。相反,如果系统具有测试的所有信号和足够的仪器,虽然能较快地提高吞吐量,但通常是成本高而不合算。

  低成本测试系统的传统办法是在几个信号间开关转换一个数字电压表(DVM)。若只包含两个信号,则连接DVM用一个单刀双掷开关(SPDT),单刀连接其两个信号之一。若必须开关转换信号的高和低端,则双刀双掷(DPDT)配置是适合的。对于4个信号,可用双刀4掷(DP4T)开关。

  应用也存在超过2刀以上的情况。例如,4PDT(4刀双掷)开关可支持对两个元件的4线或kelvin连接欧姆测量。一个6PDT开关可提供驱动保护和4线欧姆测量。当然,这类开关术语可以无限地扩展。

  从类似的刀和掷概念描述多路复用器,表示为n×m,其中n为刀数、m为掷数。某些供应商把单刀8路多路复用器表示为1×8,而另一些供应商称之为8×1。多路复用器中,所有刀通常都接通在一起。例如,一个2×8多路复用器可用来接通8个差分信号中的一个到一个差分电压表。

  同样的n×m表示用来描述开关矩阵,但在实际的矩阵中,n行中的任一行可以连接到m列中的任一列。例如,一个2×8矩阵可以同时连接到的任一行或两行到列的任一列。若希望此矩阵可做为差分多路复用器,因包含大量的开关使其性能变坏、成本较高。

  通常开关矩阵用于接通多输入通道中的多个仪器。图1示出列基矩阵开关仪器、源和DUT(通道1),DMM测量电压。同时,不用的输入都接地。在这种配置中,矩阵行的作用如同总线连接在一起的列组。

  在行基的配置中,测试仪器和源是配置在不同的行中,列专门配置DUT。可以选择任何的行和列组合。重要的是正确地编程开关以防短路。有些情况用闭锁矩阵可以避免矩阵增加成本。这些矩阵只允许一行连接到一个特定的列。根据所需的开关灵活性,可以组合少数多路复用器构成稀疏矩阵,它只支持所有可能行一列组合的一个子集。

  行和列接通顺序也是重要的。通常,用先开后合开关来确保瞬时短路不会发生在不兼容信号间。在开发测试程序时,开关配置软件可以监控编程的仪器,在连接损坏时禁止开关变化。测试编程人员的责任是矩阵的应用,使测试系统和DUT安全。

  RF测试实例

  RF无线电 IF(中频)抑制测量的简化测试系统示于图2。FM信号功率和载波频率都受控制。测量跨接在4欧姆负载(模拟扬声器)上的无线电音频输出。测量仪器(图中未示出)直接连接到无线电输入和输出。

  RF信号和无线电都调谐到90.1MHz。在测试的第一部分,-3dB限制灵敏度测量,RF功率从参考电平减少到音频输出降到3dB为止。后面用该RF功率电平计算无线电IF抑制。

  其次,信号载波频率降到10.7MHz,但无线电保持调谐到90.1MHz。监控无线电输出电平随RF信号功率电平增加的情况。

  多路复用器

  NI公司的PXI-2593开关模块,可用于无端接的配置,如四3×1,双8×1或单16或17×1多路复用器。增加外部50欧姆终端可支持500MHz以上高频信号用的双4×1或单8×1端接多路复用器。这种配置的详图示于图3。

  一般,完整的开关模块表征参量是隔离、返回损耗和插入损耗。实际中,用向量网络分析仪来测量模块或个别继电器的性能,能很快地提供完整的S参量信息。可从S参量推导出隔离和损耗量。

  往往要做一定的简化。例如,一个继电器从输入或输出看,物理上是相同的,则从输出到输入传输S12和从输入到输出传输S21将是相等的或非常接近于相等。

  在无线电测试装置中,500MHz开关性能指标大大超过90.1MHz最高信号频率。然而,对于RF应用,带宽的开关性能指标才是关键。例如,开关如何良好地与测试系统的50欧姆特性阻抗匹配?不好的匹配等效于大的电压驻波比(VSWR),这会导致驻比图形反射和失真的测试信号。

  PXI-2593的VSWR(DC到200MHz)保证小于1.4:1。其典型性能图示出,VSWR仅大于1.1:1。VSWR=(1+|Г|)/(1-|Г|),式中1Г1是反射系数值。对于这些VSWR限制,其相应的输入反射系数范围是0.167~0.048,或17%~5%左右。

  往往标出返回损耗而不是反射系数。返回损耗=-20log(|Г|),对于无线测试例子,它是15.5dB~26.4dB。此值越大,意味着通过开关的功率与反射功率之比就越大。换言之,较大的返回损耗值,意味着更多的输入功率呈现在输出。

  考虑在相同VSWR范围内的插入损耗。假若由于在输入端的反射使信号功率损失16.7%,则83.3%信号功率到达输出。0.833:1比是插入损耗计算的基础。插入损耗=10 log(输出/输入)。对应于1.4:1和1.1:1 VSWR插入损耗分别为0.8dB和0.2dB。典型的性能图示出在100MHz插入损耗为0.2dB。

  隔离

  当开关打开和信号通路完全切断时,信号的一小部分仍然会耦合到输出。隔离描述输入信号功率耦合到输出的部分。随着频率的增高,开关隔离会降低,这是因为跨接断开接点处的电容所致。然而,不同的继电器具有足够低的电容支持开关转换1GHz或2GHz信号,甚至高达40GHz的信号。

  例如,最高密度的开关模块采用小的簧片继电器作为开关器元件。簧片继电器除小型特点外,还具有非常好的可靠性、低成本、指标范围宽的特点。因为在玻璃管中两个簧片彼此靠近,开关打开的最小电容大约为0.2pF。

  有一种BGA封装的继电器,是专门为匹配50欧姆传输线而设计的无引线器件。BGA继电器的输入和输出信号通路设计成RF传输线,贯穿继电器的RF阻抗近50欧姆。这种继电器虽然有11.5GHz,-3dB带宽,但在5GHz其隔离仅为10dB。尽管此继电器具有良好的匹配特性,产生良好的返回损耗(1GHz时35dB,5GHz时20dB),但当继电器打开时,有10%的输入信号漏到输出(在5GHz)。

  用于讨论隔离的电容耦合模型由下列部分组成:一个开路接点上的电压源、跨接在接点上的杂散电容、另一个接点到地的50欧姆负载。基于这种非简化的模型,0.28pF电容对应10dB隔离(在5GHz)或41dB隔离(100MHz)。

  PXI-2593 多路复用器的隔离没有规定,但通常在100MHz,其隔离大于90dB。在性能指标中注明继电器的类型是机电锁存继电器。这种高频机电继电器(如G6Y)在900MHz,至少可提供65dB隔离。尽管PXI-2593多路复用器不采用簧片继电器,但在高频达到非常高的隔离是可能的。两个继电器与第3个继电器串联的T形配置,从中间点到并接电容耦合信号到地。这种方法需要3个继电器,而串联的两个继电器失配,将使整个插入损耗变坏。

  为了在非常高的频率实现良好的损耗和隔离利用段时间来确定相干取样频率。再次考察相同的8位图形,将数据分为两段(图2)。由于分段的缘故,数据取样不再按正常的时间顺序排列,而是交错地进行的,因此取样波形是在采集完成后重新排序获得的。CIS的取样速率由下式给出:

  SR=KN/Tb(NL+K)

  因子K是可变的,对任何们长度和速率能保持10MS/s的取样率。
  
  近实时取样示波器

  NRO采用CIS技术,取样器锁定在从输入信号中恢复的时钟上,取样速率略低于10MS/s,这样取样速率不是数据速率严格的整分数倍,让取样在图形的同一时间点上重复进行。示波器连续地捕获数据,并将数据存储器长度为4M点,最长可达512M点。

  如上分析表明,NRO不是顺序地采集数据的,需用记录数据重新排序后来重构波形。由于数据采集技术的差异,CIS方法采集数据至少比顺序取样技术快50倍(10MS/S对于200KS/S);数据点多1000倍(4M点对4K点)。NRO的有效带宽在20GHz-100MHz。

  NRO通常用来捕获重复的数据图形。但也可以对非重复的信号(包括现场的串行数据流)进行眼图的测试和抖动测量。CIS时基的取样脉冲与时钟信号锁相的,CIS时基的RMS抖动一般小于600fs,可选购的高稳定时基则能提供小于200fs的RMS抖动。在CIS模式中,4M点基本存储长度可以在长串行数据码型上完成抖动成分的分解;存储长度扩展到512M点时,更能捕获,显示、测量近数百万位的码型。

关键字:测试系统  开关构造 引用地址:测试系统的开关构造

上一篇:电能质量监测新途径
下一篇:提高DFT设计测试覆盖率的一种有效方法

推荐阅读最新更新时间:2024-03-30 22:22

DSP和CAN总线在直流电机测试系统中的应用
随着电子工业的迅速发展,对小型直流电机的需求量越来越大。这一类直流电机在出厂前往往需要对其电流和转速进行测试。具体的方式是给电机提供多种占空比的PWM控制信号,在不同的占空比下分别测试电机的电流和转速。传统的测试方法需采用多台通用仪器:用信号发生器提供电机所需的PWM信号,通过电阻采样电机的电流,并送电压表头显示,使用光电感应的方法测转速,通过示波器观察波形。目前在我国采用的大多是传统的测试方法,传统方法要求在车间的每个生产线上设置多个检测点,每个测试点只能测量一种占空比下PWM信号控制的电机电流和转速。因此,在每个测试点都要配备测试员和一套完整的测试仪,使得成本很高。而且在测试过程中,要完成一个电机的测试必须经过多个测试点,每个点
[测试测量]
DSP和CAN总线在直流电机<font color='red'>测试系统</font>中的应用
最高频率可达6GHz的MIMO测试系统
多输入多输出(MIMO)技术正在迅速流行起来,以便增强噪声和干扰环境中的无线电性能。为同时满足下一代射频通信设备和器件的研发和生产测试需求,吉时利仪器公司(Keithley)开发了4×4 RF MIMO射频测试系统。这套系统包括2920型矢量信号发生器(VSG)、2820型矢量信号分析仪(VSA)、2895型MIMO同步单元以及MIMO信号分析软件。 新型射频信号发生器和射频信号分析仪支持的扩展频率范围达6GHz。2920型VSG提供两种配置,最大频率分别为4GHz或6GHz,产生的信号频率可低至10MHz。存储深度达100M Samples的可选80MHz带宽任意波形发生器(AWG)为用户提供了测试大量商用通信信号
[测试测量]
最高频率可达6GHz的MIMO<font color='red'>测试系统</font>
基于虚拟仪器技术实现发动机综合性能测试系统的设计
1 引 言 随着发动机电控技术的发展,对发动机测试提出了更高的要求。发动机试验的自动化成为提高发动机测试效率和质量的重要方法。虚拟仪器是用软件将计算机与标准化虚拟仪器硬件结合起来,从而实现传统仪器功能的模块化,以达到自动测试与分析的目的。利用虚拟仪器技术用户可以通过图形化的编程环境和操作界面,轻松完成对待测对象的信号调理、过程控制、数据采集、数据分析、波形显示、数据存储、故障诊断以及网络通信等功能,大大缩短了系统开发周期;同时由于采用了标准化的虚拟仪器软硬件,测试系统的兼容性和扩展性也得到了很大程度的增强;除此以外,虚拟仪器技术的灵活性强和可重用度高,可以使用户的测试系统规模最小化,且易于升级和维护,用户甚至可以使用现有硬件组成另
[测试测量]
基于虚拟仪器技术实现发动机综合性能<font color='red'>测试系统</font>的设计
基于SST89E58RD2的智能测试系统设计
1引言 随着电子、电器类产品在社会生活中的普及,国内众多中小企业也纷纷开始自行研制,生产此类产品以满足市场的需求,但由于中小企业人力、物力的局限,往往将主要经历放在了产品的生产上,而对于产品的出厂检测却不够完善,造成产品返修率较高的局面,从实际情况来看,造成产生返修的故障中很大一部分是能够在出厂检测时被发现的,但是由于目前国内的中小企业大部分依靠人工借助部分仪器,仪表来检测,使得检测效率低、测试面不广,存在错检,误检等情况。 智能测试系统的引入可以很好地解决此类矛盾,帮助企业提高产品检测的效率,下面将以一款麻将机主机板的智能测试系统为例,全面阐述设计原理。 2 SST89E58RD2特性介绍 SST87E58RD
[应用]
基于单片机的车载超级电容测试系统设计与实现
  伴随着科技的进步,电动汽车技术得到迅速的发展。相比内燃机汽车,电动汽车具有零排放、高能量效率、低噪声、低热辐射、易操纵和易维护等优点,将是未来汽车发展的方向,也是现行研究的热点。   电动汽车的动力电池有如下三类:燃料电池、蓄电池和超级电容。燃料电池、蓄电池和超级电容在能量密度和功率密度上有互补性 。单一使用蓄电池、燃料电池或者超级电容,难以用作电动汽车的动力源。混合电池是一比较理想的解决办法。采用混合电池驱动系统,特别利用超级电容快速充放电能实现汽车制动能量回收,以及燃料电池超大能量密度支持汽车持久行驶,使得燃料电池/超级电容组成的混合驱动系统成为电动车驱动的最佳方案 。   对于车载用电源,为达到较高功率和能量,超级电
[测试测量]
基于单片机的车载超级电容<font color='red'>测试系统</font>设计与实现
浅谈激励-响应测试系统
混合信号 的 激励 - 响应 测试在当今的测试测量应用中变得越来越普遍,通常此类应用需要将特定的模拟或数字信号作为激励信号输入到被测设备,同时获得被测设备的响应信号,通过分析响应信号或与期望的信号进行对比来刻画被测设备的特性或者进行故障的判断。由于当今的电子产品功能越来越集成化,其涉及的信号种类也很复杂,因此激励-响应测试往往是一个涉及混合信号的较复杂的测试系统。 先来看两个混合信号激励-响应测试的案例,从中归纳出激励-响应测试应用的典型需求,并进一步延伸到所需的必备技术,帮助读者更好的去理解和* 估一个激励-响应测试系统。 测试模数转换器的 非线性度 在对ADC精度的测试中,差分非线性(DNL)和积分非线性(INL)是描
[测试测量]
浅谈激励-响应<font color='red'>测试系统</font>
基于单片机的微波脉冲功率测试系统
1工作原理   本系统充分利用89C51单片机的控制和计算能力,采用MCS-51汇编语言,设计了一种基于平均功率法的微波脉冲测试系统。   平均功率法测量的是射频脉冲复重周期的平均功率,并采用辅助方法测出脉冲的占空系数。设脉冲为矩形,宽度为τ,重复周期为T。则脉冲峰值功率为:   上式中,Q=τ/T是射频脉冲的占空系数。   测量时,用示波器显示其脉冲波形,并测量脉冲重复周期T和宽度τ。用测量连续波功率的方法测出脉冲的平均功率Pav。   当使用衰减器和定向耦合器时,若衰减器两端匹配时的衰减量为A(dB),定向耦合器的过渡衰减量为C(dB),方向性为无穷大,则脉冲峰值功率为  当脉冲为非理想矩形时,须乘以修正系数K进行修
[测试测量]
基于单片机的微波脉冲功率<font color='red'>测试系统</font>
基于SPCE061A的传感器测试系统应用与设计
   引言   近些年来,气敏传感器研究发展迅速,对气敏传感器的测试也越来越普遍。传感器测试主要是为了检测传感器的指标从而判断该传感器是否为合格产品,传感器的性能指标一般包括静态指标和动态指标,静态指标的检测是必需要进行的一道工序。采用传感器自动测试系统可以解决人工检测造成的效率低下、人为造成的误差及操作人员劳动强度大等诸多问题。气敏传感器在工业及日常生活中有着广泛的应用,尤其是可燃气体传感器在防火防爆方面起着举足轻重的作用,这类传感器主要用来测定环境中易燃性气体比如氢气、天然气、瓦斯等的浓度,通常制成报警器用来对空气中的可燃气体浓度进行监控,当浓度超过指标时,传感器就会输出警告信号触发报警装置。传感器的指标检测非常重要,因为一
[单片机]
基于SPCE061A的传感器<font color='red'>测试系统</font>应用与设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved