浅析射频标识RFID测试技术

发布者:SereneNature7最新更新时间:2012-04-12 来源: 维库开发网关键字:射频标识  RFID  测试技术 手机看文章 扫描二维码
随时随地手机看文章
  随着阅读器与标签价格的降低和全球市场的扩大,射频标识 RFID(以下简称RFID)的应用与日俱增。标签既可由阅读器供电(无源标签),也可以由标签的板上电源供电(半有源标签和有源标签)。由于亚微型无源 CMOS 标签的成本降低,库存和其他应用迅速增加。一些评估表明,随着无源标签的价格持续下降,几乎每一个售出产品的内部都将有一个 RFID 标签。由于无源 RFID 标签的重要性及其独特的工程实现的挑战性,本文将重点研究无源标签系统。

  当接收到来自阅读器的 CW 信号时,无源标签对射频 RF(以下简称 RF)能量进行整流以生成保持标签工作所需的小部分能量,然后改变其天线的吸收特点以调制信号,并通过反向散射反射给阅读器 [参阅图1]。RFID 系统通常使用简便的调制技术和编码体制。然而,简单调制技术的频谱效率低,对于某一给定的数据速率,它所要求的 RF 带宽多。在调制前,必须将数据进行编码形成一连续的信息流。可用的位编码体制有很多类型,每一类编码都有其基带频谱性能的独特优势、编解码的复杂性以及在时钟驱动下将数据写入到存储器的困难性。由于标签板上定时源很难达到实际所需的准确性,以及挑战性的带宽要求和最大化 RF 能量传输以向标签供应能量等原因,无源标签对所使用的编码体制有独特的要求。最后,需要某种防冲突协议以便阅读器能够读取其覆盖范围内的所有标签。

  RFID测试综述

  每一个 RFID 通信系统都必须通过监管要求并符合所用标准。然而,今天,系统优化将这个快速增长产业中的胜者与输者分离开来。本文讨论的是 RFID 通信系统的设计师所面对的测试挑战:监管测试、标准一致性和优化。

  RFID 技术有几个不同寻常的工程测试挑战,例如瞬时信号、带宽效率低的调制技术和反向散射数据。传统的扫频调谐频谱分析仪、矢量信号分析仪和示波器已被用于无线数据链路的开发。然而,这些工具用于 RFID 测试时都存在一些缺点。扫频调谐频谱分析仪难以准确捕获和刻画瞬时 RF 信号。矢量信号分析仪实际上不支持频谱效率低的 RFID 调制技术及特殊解码要求。快速示波器的测量动态范围小,不具备调制和解码功能。实时频谱分析仪 RTSA(以下简称 RTSA)克服了这些传统测试工具的局限性,具备对瞬时信号的优化,通过泰克享有专利的频率模板触发器能够可靠触发复杂的真实频谱环境下的特定频谱事件。

无源标签对射频 RF能量进行整流并调制信号,然后反向散射反射给阅读器

图1:无源标签对射频 RF能量进行整流并调制信号,然后反向散射反射给阅读器。

  监管测试

  每个电子设备制造商都必须符合设备销售地或使用地的监管标准。许多国家正在修改监管法规以紧跟无源 RFID 标签的独特数据链路特点。大多数监管部门禁止设备的 CW 发射,除非用于短期测试。无源标签要求阅读器发送 CW 信号以向标签供应能量并经过反向散射实现调制。即使无源标签没有一个典型的发射器,仍能发出一个被调制的信号。然而,许多规定并没有涉及基于无发射器的调制。多种频谱发射测试并没有明确地包含在阅读器的 RFID 标准中,但却成为了规定。

  政府规定要求控制发射信号的功率、频率、带宽。这些规定防止有害干扰并保证每个发射者都是频带内其他用户的友好邻居。对于许多频谱分析仪特别是通常用于脉冲信号能量测量的扫频频谱分析仪,进行此类测量是具有挑战性的。RTSA 能够分析一个完整的分组发射过程的能量特点,也能直接测量跳频信号的载波频率,而无需将信号置于一个跨度的中心。按一下按键,分析仪就能识别一个瞬时 RFID 信号的调制方式并能够对功率、频率和带宽进行监管测量,使预一致性(pre-compliance)测试过程变得非常灵活和方便 [参阅图2]。预一致性测试有助于确保产品一次通过一致性测试,而无需重新设计和重新测试。

预一致性测试过程

图2:预一致性测试过程[page]

  标准一致性

  阅读器和标签之间可靠的相互作用要求与 ISO 18000-6 C 类型规范等产业标准相一致。该要求增加了许多超出基本要求的测试以满足政府的频谱发射要求。RF 一致性测试十分关键,有助于确保标签和阅读器间的可靠协同工作。

  预编程测量能减少进行这些测试所需的建立时间。例如,ISO18000-6 C 类型的一个重要测量是启动时间和关闭时间。载波能量上升时间必须足够快以保证标签采集到使其正常工作的充足能量。信号也必须迅速达到稳定状态。发射结束时,载波能量下降时间必须足够快,以防止其他发射受到干扰 [参阅图3]。

发射结束时

图3:发射结束时,载波能量下降时间必须足够快,以防止其他发射受到干扰。

  一些 RFID 设备使用了经过优化的面向特定应用的专用通信机制。这种情况下,工程师需要一种分析仪能够提供多种调制和编码机制,可根据所使用的特定格式,对这些调制和编码机制进行编程调整。

优化

  一旦满足基本规范,对 RFID 产品的性能进行优化以赢得某一特定市场空间的竞争优势就显得尤为重要。性能指标包括标签的读取速度、标签在多阅读器环境中的工作能力和标签与阅读器之间的距离。在消费应用中,标签与阅读器之间的通信速度直接影响用户的满意度。例如,使用 RFID 的公共运输业,读取时间由 5 秒钟降低到小于半秒钟后,才得到广泛认可。在工业应用中,速度就意味着生产量:生产量越高,资金和人力资源的使用效率就越高。由于无源标签从 RFID 阅读器获得它们正常工作所需的能量,多个阅读器可能导致标签试图对询问它的每一个阅读器都进行响应。在多阅读器情况下,为改善系统的吞吐量需要使用某种防冲突协议。最后,为最大化标签的读取范围,载波对噪声(carrier to noise)的要求应当最小化,但是这可能与通过最小化载波的不工作时间以防止标签耗尽能量的需要相冲突。这些优化措施对工程师和测量设备提出了挑战。

  让我们看一个具体的例子 —— 优化通信速度,也称为翻转时间 TAT(以下简称 TAT)。可用的 RF 能量、路径衰落和经过更改的符号速率能延长标签对阅读器查询的响应时间。响应越慢,读取多个标签所花费的时间就越长。快速测量 TAT 对优化 RFID 系统的速度是非常必要的。

使用 RTSA可以很容易地测量 TAT

图4:使用 RTSA可以很容易地测量 TAT。

  使用 RTSA 可以很容易地测量 TAT [参阅图4]。首先,需要安装一个频率模板触发器以获取标签与阅读器之间的整个查询。RTSA 的功率与时间关系视图使用户能够观看整个发射过程。习惯认为一个下行链路传输(由阅读器到标签)结束到下一个下行链路传输开始之间的时间就是半双工系统的 TAT。将一个标记放在标签询问的结束点,第二个 δ 标记置于反向散射的结束点或下一次阅读器进行数据发射的开始点,就可以精确测量出 TAT 时间。在大范围下行链路的条件下维持最短的 TAT 将有助于系统吞吐量的最大化。

  RTSA 也能解调与标签查询相关的符号或比特。用户只需选择相应的 RFID 标准、调制类型和解码格式。分析仪能自动检测并显示链路的比特率。为进一步提高工程师的生产效率,对恢复出的数据符号进行了基于功能的颜色编码 (color-coded)。RTSA 能够自动识别前导符并将那些符号染成$。这易于识别实际的数据负荷并与已知值进行比较。

  本文小结

  RFID 产业包含了大量的技术和应用,其中许多技术和应用与典型的通信链路不同。工程师需要能够快速和便捷地进行监管测试、标准一致性和优化测量的工具。

  RSA3408A 是满足这些需求的一种工具,支持多种 RFID 国际标准、时间相关的多域测量、定制的 RFID 通信体制、多种 RFID 信号的解调和符号解码。该仪器大大提高了工程效率,同时缩短了产品投放市场的时间。不论是满足政府频谱规定、保证标签或阅读器符合特定的通信标准,还是调试一个开发中遇到的问题,RTSA 都是适合分析阅读器和标签所发出的 RFID 信号的独特工具。

关键字:射频标识  RFID  测试技术 引用地址:浅析射频标识RFID测试技术

上一篇:SPI总线测试和分析
下一篇:基于DTMF和GSM的远程监测报警系统研究与实现

推荐阅读最新更新时间:2024-03-30 22:25

内置串行接口的铁电随机存储器(FRAM) RFID
铁电随机存储器( FRAM ) RFID由于存储容量大、擦写速度快一直被用作数据载体标签。内置的串行接口可将传感器与RFID连接在一起,从而丰富了RFID应用。   概述   到目前为止,富士通半导体已经开发出了高频段(13.6MHz)和超高频段(860 MHz到960 MHz)RFID LSI产品。这些产品最重要的特点就是它们内嵌FRAM。由于擦写速度快、耐擦写次数高,它们已经作为数据载体型被动RFID LSI而被全世界广泛采用。   大存储数据载体的优势就是RFID可以记录可追溯数据,如制造数据、生产数据、物流数据、维护数据等,因此它可用于各种资产、产品和零部件的管理。由于大存储数据载体具有这些优势,人们希望进一步利用F
[模拟电子]
内置串行接口的铁电随机存储器(FRAM) <font color='red'>RFID</font>
基于RFID技术的电子车牌在智慧交通中的应用
随着城市规模的扩大,人们生活水平的提高,道路上的车辆变得越来越多。这不仅增加了交通压力,对车辆的管理也提出了更高的要求,有没有新的科技去解决这些难题呢?答案当然有,它就是智能电子车牌。 提到智能电子车牌,很多人都会感到好奇,在这里就要给大家科普一下什么是智能电子车牌以及未来的发展趋势。目前,最常见的对车牌的定位和识别基本还是依赖图像识别,检测到车牌号后与数据库中的名单进行比对处理,但是图像识别受环境因素影响大,识别车牌容易出错,而且在采集图像时也经常会出现盲区,这些不可控的因素限制了图像识别的进一步发展。 为了能解决这一系列问题,智能电子车牌就应运而生了,智能电子车牌是基于RFID技术,而RFID技术作为一种新兴的非
[物联网]
基于<font color='red'>RFID</font>技术的电子车牌在智慧交通中的应用
基于RFID的图书馆安全认证协议设计
射频识别(RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据。RFID可广泛应用于工业自动化、商业自动化、交通运输控制管理、图书管理系统等众多领域被列为本世纪十大重要技术之一。   RFID 技术在图书馆领域的应用实践正在蓬勃发展之中:Molnar 2004年指出北美有超过130家图书馆使用RFID系统。在国内,厦门集美大学诚毅学院于2006年2月率先成为国内第一家使用RFID馆藏管理系统的图书馆;随后深圳图书馆新馆也选择RFID系统作为图书馆服务体系改进的技术手段.接着,武汉图书馆成为第三家研发并全线使用RFID智能馆藏管理系统的图书馆。   保密和鉴别等安全问题是当前RFID 技术的研究热
[模拟电子]
基于<font color='red'>RFID</font>的图书馆安全认证协议设计
雷柏智能装备应用基于IOT和RFID收发分离技术,助推企业仓储物流系统智能化升级
面对当下巨大的市场竞争压力,企业构建核心竞争力亟需通过提高效率来解决,智能仓储物流系统可以有效改善企业的仓储物流管理,提升企业的物流管理水平和仓储质量。物联网(IOT)被称为信息科技产业的第三次革命,可以实现“物与物相连”的互联网网络,实现万物互联、万物智能化,其中射频识别技术(RFID)是物联网最关键的技术。基于IOT和RFID收发分离技术收发分离技术可以达到提高智能化管理的目的,能够很大程度上提升现代仓储物流的效率水平。           (RRS堆垛机验证线出货视频) 随着RFID技术在仓储物流管理中的推广应用,企业可以改变传统的仓库管理方式与工作流程,提高出入库、盘点、库存控制等核心业务流程的智能化水平。RFID技术可
[机器人]
RFID技术在小区安防系统中的应用方案
从分析近期几个小区发生的盗窃事故中发现几个共性问题:小区保安与进入小区内的人员车辆信息沟通不及时;事发后对事故的处理的效率低、取证效果差。为此,如何对进入小区内的人员车辆信息正确处理和定位对提升小区安全至关重要。目前,小区的安防系统又无法实现对所有进入小区内的人员车辆进行监控、定位,本文正是针对这一问题,提出把RFID技术应用在小区的安防系统中,进而实现对每一位进入小区的人员车辆进行定位和信息处理,为小区安全提供保障。本文主要从“定位”这个角度论证RFID技术在小区安防系统中应用的可行性。 1 RFID组成及工作原理 1.1系统组成分为三部分 (1)标签(Tas) 标签相当于条码技术中的条码符号,用来存
[安防电子]
测试UHF RFID天线的方向图和增益的方法
人们都对5G网络怀有无限愿景:比如借助更高的网络容量和更快的速度,医生可以为患者进行远程诊断。同时物联网(IoT)时代接入网络的设备将会大幅增长,促使智能楼宇和智慧城市成为现实。 天线方向图,又叫辐射方向图、远场方向图。所谓天线方向图,是指在离天线一定距离处,辐射场的相对场强随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示,天线方向图是衡量天线性能的重要图形;天线增益则是天线把输入功率(能量)集中辐射的程度,从通信角度讲,就是在某个方向上和范围内产生信号能力的大小。本文介绍了如何利用芬兰的标签性能测试仪来测试超高频RFID读写器天线的方向图和增益。 1、测试中使用的系统和组件 测试中会用到芬兰的超高
[测试测量]
测试UHF <font color='red'>RFID</font>天线的方向图和增益的方法
RFID测试技术分析
随着阅读器与标签价格的降低和全球市场的扩大,射频标识 RFID(以下简称RFID)的应用与日俱增。标签既可由阅读器供电(无源标签),也可以由标签的板上电源供电(半有源标签和有源标签)。由于亚微型无源 CMOS 标签的成本降低,库存和其他应用迅速增加。一些评估表明,随着无源标签的价格持续下降,几乎每一个售出产品的内部都将有一个 RFID 标签。由于无源 RFID 标签的重要性及其独特的工程实现的挑战性,本文将重点研究无源标签系统。 当接收到来自阅读器的 CW 信号时,无源标签对射频 RF(以下简称 RF)能量进行整流以生成保持标签工作所需的小部分能量,然后改变其天线的吸收特点以调制信号,并通过反向散射反射给阅读器 。RFID 系
[网络通信]
RFID(射频标识) 测试技术分析
  随着阅读器与标签价格的降低和全球市场的扩大,射频标识 RFID(以下简称RFID)的应用与日俱增。标签既可由阅读器供电(无源标签),也可以由标签的板上电源供电(半有源标签和有源标签)。由于亚微型无源 CMOS 标签的成本降低,库存和其他应用迅速增加。一些评估表明,随着无源标签的价格持续下降,几乎每一个售出产品的内部都将有一个 RFID 标签。由于无源 RFID 标签的重要性及其独特的工程实现的挑战性,本文将重点研究无源标签系统。   当接收到来自阅读器的 CW 信号时,无源标签对射频 RF(以下简称 RF)能量进行整流以生成保持标签工作所需的小部分能量,然后改变其天线的吸收特点以调制信号,并通过反向散射反射给阅读器 。RFI
[测试测量]
<font color='red'>RFID</font>(<font color='red'>射频</font><font color='red'>标识</font>) <font color='red'>测试技术</font>分析
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved