每位工程师在使用示波器进行功率测量时都必须知道的7大秘诀

发布者:EEWorld资讯最新更新时间:2012-06-21 来源: EEWORLD关键字:示波器  功率测量  7大秘诀 手机看文章 扫描二维码
随时随地手机看文章

第1个秘诀 通过计算平均值提高测量分辨率

在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。

求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。

垂直分辨率每增加一位,需要计算多少平均值?答案是每计算 4 个样本平均值,便可将垂直分辨率增加 1 位。原理如下:

• 增加的位数 = 0.5 log2 N
• N = 计算平均值的样本数
• 例如,对 16 个样本求平均值,垂直分辨率将增加:
• 位数 = 0.5 log2 16 = 2
• 因此,有效的垂直分辨率为 8 + 2 = 10 位。

这种算法在垂直分辨率为 12 位时效果最好,因为再继续增加下去,其他因数(例如示波器的垂直增益或偏置精度)将起到决定性作用。平均模式的优点是,它对示波器的实时带宽没有任何限制。缺点是它要求使用重复性信号,并会降低波形更新速率。


图 1:在正常采集模式下捕获的开关电源的 Vds

图2:在正常平均模式下捕获的 Vds

第2个秘诀 使用高分辨率采集提高测量分辨率

降低噪声的第 2 个方法是高分辨率模式,它不需要使用重复信号。Agilent InfiniiVision 3000 X 系列等现代化示波器在正常采集模式下可提供 8 位垂直分辨率(与大多数其他数字化仪类似)。然而与平均模式一样,高分辨率模式也只能达到 12 位的垂直分辨率。

高分辨率模式是对同一次采集的连续点求平均值,而不是对某个时间段内多次采集的点求平均值。在高分辨率模式中,您不能像在平均模式中那样,直接控制平均值数量。垂直分辨率位数的增加由示波器的时间/格设置决定。

当在较慢时基范围状态下工作时,示波器会连续过滤相继的数据点,并将过滤结果显示到显示屏上。增加屏幕上数据的存储器深度,也会同时增加进行平均值计算的点数。高分辨率模式下,扫描速度越快,在屏幕上捕获的点数就越少,因此效果就越差。相反,扫描速度越慢,在屏幕上捕获的点数就越多,效果也就越显著。

图3 在高分辨率模式下捕获的Vds

第3个秘诀 使用交流耦合,去除直流偏置

如果您正重点研究信号的纹波,可能并不关心其直流偏置。通常,纹波和噪声与电源电压相比是极小的。如果您使用示波器的动态范围对这种偏置进行定量测量,那么在遇到更微小的信号细节时,可能无法进行深入分析。将示波器的耦合设置为“交流”,将会从测量结果中去除直流偏置,最大限度提高测量的线性度和动态范围。

第4个秘诀 使用示波器和探头限制带宽

这种降低噪声、增加动态范围的方法虽然简单,但常常被忽视。电源信号内容与示波器的标称带宽相比往往低得多(kHz 至几十 MHz 级别)。多余的带宽不会传输任何信号信息,只会给测量带来额外的噪声。

大多数示波器使用专用的硬件滤波器来解决这个问题――通常是 20 至 25 MHz 低通滤波器。硬件滤波器与软件滤波器相比的一个优势是,它不会影响示波器的更新速率。

另一种方法是使用探头来限制带宽。测量链的带宽受其“最弱一环”的限制。500 MHz 示波器配备 10 MHz 探头,其带宽将会是 10 MHz。安捷伦提供了多种无源、有源的电流和差分探头,总有一款探头的带宽会适合您的特殊测量。

第5个秘诀 使用差分探头进行安全、精确的浮置测量

示波器探头上的接地引线通过 BNC 连接器的外壳连接到机箱。出于安全考虑,示波器的机箱通过电源线的接地插头连接到接地参考面。示波器与电源的接地方式不同,两者之间可能产生冲突。许多令人感兴趣的信号是以电势而不是以接地作为参考的(浮置)。电源设计人员采用各种方法来克服这一测量限制。

最常用的方法是,通过削除电源线的防护接地插头,或在电源线路中使用隔离变压器,使示波器“浮置”(隔离)。T这种实践方法非常危险,因为它有可能在示波器机箱上形成高电压。此外,使用浮置示波器进行测量,可能导致测量结果不精确。

测量浮置电源信号的另一种方法是,使用两个单端电压探头,用通道 A 的测量结果减去通道 B 的测量结果,即得到浮置电源信号。使用两个输入通道和探头来测量感兴趣的信号节点。然后使用示波器上的波形数学功能,让两个通道上的电信号相减,得到差分信号的迹线。

这种方法相对安全一些,因为示波器始终保持接地。然而当共模信号相对较小时,测量会受到一定的限制,因为此时使用的两个探头输入通道之间的增益失配,共模抑制比较低,大约不到 20 dB(10:1)。

进行安全精确的浮置测量,最好使用差分探头或差分放大器。差分探头提供较高的共模抑制比,通常达到 80 dB 或 10,000:1 甚至更高,因此您可以测量大共模信号中隐藏的小差分信号,实现适当的测量精度和高灵敏度。使用动态范围和带宽足够满足应用需求的差分探头,可进行安全和精确的浮置测量。

图4 使用差分探头或差分放大器进行浮置测量更安全

第6个秘诀 避免探测耦合了辐射功率的附件

请务必谨慎使用探测附件。通用无源探头在标准配置中通常提供 15 厘米长接地引线和挂钩探针,这两种附件可能会探测到电源或其他器件所产生的噪声。此外,长接地连接往往会产生电感负载,给被测信号增加振铃。

 

反之,较小的探针、较短的接地连接――例如使用电路板上的 BNC 适配器或卡口式接地引线――可以显著减少探测到的噪声,其原理是通过尽量减少连接的匝数,可降低电感负载。

 

第7个秘诀 选择避开示波器最灵敏设置的探头

如果您测量电源的纹波和噪声幅度,有可能要用到示波器最灵敏的或接近最灵敏的 V/格设置。这正好处于放大器安全性能范围的边缘。虽然测试仪器的工作可能会符合技术指标,但是实际的测量效果也许还比不上它的“基本”性能。

首先,应尝试使用 1:1 探头,而不是使用仪器附带的标准配置 10:1 无源探头。若使用 10:1 探头,不仅示波器的基线本底噪声会以 10 倍增加,而且示波器的最小 V/格设置也会比使用 1:1 探头时的情况大 10 倍。这会导致信噪比降低,测量的动态范围缩小。使用衰减较小的探头,只要测量的信号不超过示波器的最大输入电压,那么就可以获得出色的信号完整性。

关键字:示波器  功率测量  7大秘诀 引用地址:每位工程师在使用示波器进行功率测量时都必须知道的7大秘诀

上一篇:触摸屏控制器性能指标信噪比的测量方案
下一篇:泰克:从made in China 到design in China

推荐阅读最新更新时间:2024-03-30 22:26

为您详解实时示波器和采样示波器的区别
  在过去从事工程学工作时,我曾经接手一个研究项目——把D型光纤浸在酸液池中数小时,表征它的光传输特性。我发现有一个全新的示波器,于是选择它作为工具。连续两周我都在开发测试夹具和编写软件,由于缺乏经验,我向一位资深工程师寻求帮助。工程师提出第一个问题:“你为什么要使用采样示波器来完成这项实验?”这个问题让我感到意外。我开始思索采样示波器和实时示波器有什么区别?两者的应用范围有哪些不同,哪些是可以覆盖的?   实时示波器通常被称为DSO(数字存储示波器)或MSO(混合信号示波器)。目前在售的大部分示波器都是实时示波器。实时示波器的带宽范围从几MHz到几十GHz,价位在几百美元到几十万美元不等。采样示波器通常被称为DCA(数字通信分
[测试测量]
为您详解实时<font color='red'>示波器</font>和采样<font color='red'>示波器</font>的区别
示波器入门必知:基础原理
概要 示波器是有史以来电子工程师最有用的工具之一。现代模拟示波器面世以来,有成百上千的文章描述了示波器的功能、原理、使用方法以及特定的应用案例。本入门指南旨在对数字示波器进行描述,出于实用目的以指导用户在绝大多数应用场合中使用数字示波器来替代模拟示波器。本入门指南简要介绍了示波器的起源、模拟示波器到数字示波器的历史、数字示波器的类型及其主要子系统、示波器关键指标以及其测量方法。 示波器的起源 诺贝尔奖获得者,德国物理学家 K.F.布劳恩(图 1)在 1897 年出于对物理现象的好奇而发明了 CRT 示波器。他向荧光 CRT 上的水平偏转片施加一个振荡信号,然后向纵向偏转片发送一个测试信号。这两个偏转片会在小荧光屏上产生瞬态的电波
[测试测量]
<font color='red'>示波器</font>入门必知:基础原理
示波器维修不开机/黑屏故障维修
分享泰克示波器在维修过程种常见故障有以下几种: 1、不开机,风扇可以转,或者开机后白屏,花屏 2、自检校准失败 3、自检通过,校准失败,有个别通道波形失真 4、旋钮失灵 5、IP地址找不到 近日深圳一家公司送修一台 泰克TDS3054示波器 ,沟通过程中自述通电无反应,不开机,黑屏。以下是安泰的维修分享。 示波器维修不开机/黑屏故障维修案例 1.通电开机,发现通电无反应,不开机,黑屏 2. 根据经验首先验证电源模块,更换功能正常的电源,故障解除。对拆解下的电源进行检测维修。 3.内部清洁除尘后,装机开机自检,功能性能正常。 4.烤机老化测试后,仪器稳定性好,维修完成。
[测试测量]
<font color='red'>示波器</font>维修不开机/黑屏故障维修
串口示波器的串口调试助手功能
逛github时看到这个QT的串口 示波器 ,完全开源,支持串口、TCP、波形显示、 通信 协议。感觉很不错,跟以前分享的那个vofa+有点像。感兴趣的可以 下载 下来学习学习。 S ai lor Project功能说明 串口调试助手功能 支持传统的串口调试助手的基本收发功能,同时可以刷新大量的数据而不卡顿 支持保存接收的数据 支持最大200条可编辑指令的设置,并用于多条发送 支持 定时器 发送 支持换行符替换时间戳功能 支持较多的中文编码格式 值得注意的是支持 Linux 简单的串口调试 支持加载csv表格数据到200条可编辑指令 支持部分窗口配置的保存和重启恢复(前提是你不会删除配置文件) 操作说明 注意由于QT自带
[测试测量]
串口<font color='red'>示波器</font>的串口调试助手功能
如何使用示波器验证电源与时间相关的各项指标
是德科技电源部分的功能性测试主要项目包括:输出纹波及噪声、过压保护截止时间、电源开启以及关闭延时、电源上、下编程时间、瞬态响应恢复时间等。 1. 输出纹波及噪声 理想的直流电压应该是随时间变化恒定不变的固定值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即使是用电池供电也会因负载的波动而产生波纹。所以直流电源的输出中夹杂的交流成分,从而使输出偏离了我们所希望的电压和电流。通常将该交流成分定义在一个特定的带宽范围内 (20 Hz–20 MHz),表征为输出噪声。 我们以 E36311A电源 为例,用 示波器MSOX3054A 测试这台电源的纹波噪声,由于我们现有表笔是 10:1的,引
[测试测量]
如何使用<font color='red'>示波器</font>验证电源与时间相关的各项指标
示波器原理和电子束实验装置实验目的
示波器原理和电子束实验装置是在学生示波器基础上研制的一种新型物理仪器,它自带低频信号发生器,可研究掌握示波器原理及各种不同类型信号的测量方法;研究和验证电子束在不同的电场和磁场条件下的运动规律,并可精确测定电子荷质比,是集示波器,低频信号发生器,电子束实验仪于一体的综合性实验仪器;具有设计新颖,结构合理,操作简便等特点,是各大中专院校物理教学、劳技课教学及职工教学课程中理想的学生分组实验仪器。 实验目的: *了解示波管的构造和各电极的作用。 *了解示波器的工作原理,掌握示波器的操作方法; *了解示波器中的信号衰减,扫描信号发生器、垂直放大器、水平放大器等工作原理; *掌握使用示波器测量各种不同类型信号波形物理参数的方法 *掌握
[测试测量]
<font color='red'>示波器</font>原理和电子束实验装置实验目的
是德 Infiniium EXR 系列示波器,直观易用,让测试更轻松
是德科技公司(NYSE:KEYS)日前宣布,通过分销渠道和直销渠道同步推出新型 Infiniium EXR系列8 通道示波器。是德科技是一家领先的技术公司,致力于帮助企业、服务提供商和政府客户加速创新,创造一个安全互联的世界。 新型 Infiniium EXR 系列示波器不但功能强大、直观易用,而且其总体拥有成本也颇具优势,性能更是可以与 Keysight Infiniium MXR 示波器相媲美。客户可以通过是德科技的全球分销商网络来购买该产品。Infiniium MXR 系列和 EXR 系列示波器将多种仪器功能融合到一个平台上,在提高工程设计效率的同时,也为操作带来了便利。两个平台均提供了高级的应用软件和丰富功能,从而让电
[测试测量]
是德 Infiniium EXR 系列<font color='red'>示波器</font>,直观易用,让测试更轻松
基于DSP的数字示波器GUI的开发
随着嵌入式系统应用领域的不断扩大,系统复杂性也在不断提高。所以在嵌入式系统中实现用户图形化(GUI),已经成为大势所趋。在测量仪器中,图形化界面也是广泛采用,一种是嵌入操作系统,大多数的用户图形化界面(GUI)都是在操作系统(如OS、WinCE、Linix)的支持下, 调用系统的各种API函数实现的。这些操作系统为实现GUI提供了大量的库函数,也为编程人员提供了界面设计的良好平台。但是这种嵌入技术,对硬件要求高,相当于嵌入一台计算机,如利用WinCE就可以十分方便的设计出具有Windows风格的图形界面。另一种是,直接利用DSP技术,开发小型系统。这种系统精简,对硬件要求低,但功能相对单一。 本文这款数字示波器是普源精电(RIG
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved