我们可以预测,如果用有接地引线的探头去测量来自低源端电阻信号源的信号,会观察到人为的振铃和过冲现象。
通过图3.6和图3.7,可以比较我们的判断和实际的测量结果。这些实验采用电容极低的FET型探头,额定为1.7PF并联电容,其3DB带宽为1GHZ,连接到数字示波器TEKTRONIX11403。图3.6中信号源的源端电阻为25欧,3IN长的接地引线。中间波形采用的是裸探头直接接触测量点,接地线长度也是3IN长的接地引线。中是的波形采用的是裸探头直接接触测量点,接地线长度也是3IN。显然,只拿掉探头的塑料夹子产生的影响很小。这此扫描波形显示,在25欧源端电阻情况下的过冲约为15%,而在5欧源端电阻情况下的过冲则高达29%。
图示的振铃周期在2~6NS之间。我们可以很快知道电路的时间常数:
由0.63NS的LC电路时间常数得到的振铃周期为:
到目前为止,测量结果和理论几乎一致。那么两个图例中最下方的波形是什么呢?为什么这个波形会更好呢?
两个图例最下方的波形为我们解决过冲问题提供了很好的思路。在下方的波形测量中,我们把探头的外塑料壳去除,把接地引线拿掉,使探头外部的金属屏蔽层以及探头顶端完全正确裸露,然后用一个刀片将探头外屏蔽层和被测电路的地直接相连,尽量靠近信号测量点。这使得实际的接地线自感非常小。采用这种直接连到地线的方法,25欧源端电阻和10欧源端电阻的扫描波形在过冲方面都得到了明显的改善。
[page]
我们可以预测,如果用有接地引线的探头去测量来自低源端电阻信号源的信号,会观察到人为的振铃和过冲现象。
通过图3.6和图3.7,可以比较我们的判断和实际的测量结果。这些实验采用电容极低的FET型探头,额定为1.7PF并联电容,其3DB带宽为1GHZ,连接到数字示波器TEKTRONIX11403。图3.6中信号源的源端电阻为25欧,3IN长的接地引线。中间波形采用的是裸探头直接接触测量点,接地线长度也是3IN长的接地引线。中是的波形采用的是裸探头直接接触测量点,接地线长度也是3IN。显然,只拿掉探头的塑料夹子产生的影响很小。这此扫描波形显示,在25欧源端电阻情况下的过冲约为15%,而在5欧源端电阻情况下的过冲则高达29%。
图示的振铃周期在2~6NS之间。我们可以很快知道电路的时间常数:
由0.63NS的LC电路时间常数得到的振铃周期为:
到目前为止,测量结果和理论几乎一致。那么两个图例中最下方的波形是什么呢?为什么这个波形会更好呢?
两个图例最下方的波形为我们解决过冲问题提供了很好的思路。在下方的波形测量中,我们把探头的外塑料壳去除,把接地引线拿掉,使探头外部的金属屏蔽层以及探头顶端完全正确裸露,然后用一个刀片将探头外屏蔽层和被测电路的地直接相连,尽量靠近信号测量点。这使得实际的接地线自感非常小。采用这种直接连到地线的方法,25欧源端电阻和10欧源端电阻的扫描波形在过冲方面都得到了明显的改善。
关键字:探头 振铃周期 源端电阻
引用地址:
探头的测量结果分析
推荐阅读最新更新时间:2024-03-30 22:30
如何判断万用表探头上的地能否直接接被测板子的地呢?
一、不安全操作之浮地测量 有些工程师会有这样的一个习惯:当要测量高压信号时,习惯性的把电源插头的保护地断开,使用普通无源探头直接进行高压的浮地测量。实际上这么做还是有危害的。 常见现象举例:触摸示波器外壳感觉到触电 检查:1.示波器电源地是否人为断开或接触不良;2.换个插排;3.所在的大楼地未接好。 原因:Y电容是跨接在电源的火线和地线,零线和地线的电容,如图1所示,主要起到滤波保护的作用,并抑制共模干扰,其属于安规电容,电容器失效后不会导致电击,不会危及人身安全。当电源插头的保护地断开时,220V电压经Y电容分压,中间110V电压直接加在示波器金属外壳上,当人触碰到带电区域时则会发生被针扎一样的触电现象,虽不会危及人身安全,
[测试测量]
安诺尼频谱仪及EMC天线和近场探头在EMC&EMI预测试中的应用
一、为什么要进行EMC合规性预测试? 随着电气电子技术的发展,家用电器产品日益普及和电子化,广播电视、邮电通讯和计算机网络的日益发达,电磁环境日益复杂和恶化,使得电气电子产品的电磁兼容 性(EMC电磁干扰EMI与电磁抗EMS)问题也受到各国政府和生产企业的日益重视。电子、电器产品的电磁兼容性(EMC)是一项非常重要的质量指标,它 不仅关系到产品本身的工作可靠性和使用安全性,而且还可能影响到其他设备和系统的正常工作,关系到电磁环境的保护问题。 为了规范电子产品的电磁兼容性,所有的发达国家和部分发展中国家都制定了电磁兼容标准。电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求。之 所以称为基本要求,也就是说,产品即使满足了电磁兼
[测试测量]
怎样校准示波器探头的10X 档
准示波器探头通常在手柄上有一个开关,用于1X 或10X 的衰减选择,当开关位于10X 位置时,实际上是将一个9M 欧姆的电阻(Ra)与示波器的输入串联。由于示波器的输入电阻(Rs)一般是1M 欧姆的,因此Ra 与Rs 实际构成了一个1/10 的分压器,也就是说它将被测电压衰减到原来的1/10 然后送入示波器。 为什么探头的10X档要经过校准 由于示波器输入端不可避免地会有输入电容(Cs),因而Ra 和Cs 就组成了一个低通滤波器,当信号有高频成分时,这个低通滤波器会严重影响示波器的性能。这是因为当信号通过这个滤波器时,频率高的成分衰减大,频率低的成分衰减少,示波器输入端得到的就不能反映原来的信号了,而是一个已经失真
[测试测量]
逻辑分析仪探头的选择
市场上逻辑分析仪厂家众多,大家在选择 逻辑分析仪 时会关注存储深度、采样率、协议解码等的对比,但往往容易忽略探头的选择,在这里跟大家好好分享下探头在逻辑分析仪中起着什么重要作用。 逻辑分析仪一般由四部分组成,探头,信号处理,数据采集,数据显示。如图 1所示: 图1便携式逻辑分析仪的硬件结构 探头的选择是测量信号的第一个环节。使用一个不合适的或者不良的探头则会影响测量结果。因此要确保探头对被测回路的影响最小。 用户在选择以及使用逻辑分析仪时,不仅要关注上位机软件的协议解码的功能,同时要注意以下几个方面。 1.1测量线的形式 各厂商标配的测量线样式不一,长度大约都在20cm以上,有单端线,屏蔽线两种。 图2单端线和屏
[测试测量]
示波器探头原理-示波器探头的工作原理
示波器探头原理 示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。 我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。 屏蔽 示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一面导线来代替探头,那到它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、5
[测试测量]
基于热释红外探头的电灯节能自动开关
摘 要:介绍了热释红外传感器的工作原理,给出了一种热释电红外报警器的结构原理及其应用电路。依据接收人体红外光谱而工作,当人体在其接收范围内活动,热释电红外探头探测到红外信号并对接收到的微弱信号加以放大,然后驱动继电器,自动开启负载,人不离开且在活动,报警持续工作,直至人离开后延时关闭报警,并给出了其完整的硬件电路设计方案与实现方法及节能目的。 关键词:快思逻辑;菲涅尔透镜;红外报警 O 引言 在当前能源紧张、构建绿色环保健康新社会的大环境下,各种新型的节能自动开关产品应运而生。电灯节能自动开关外围器件很少,节约了空间和成本及调试时间,提高整机可靠胜,如图l为整体结构框图。路灯使用这种节能装置后,将会随着周围光线变化自动开关,
[工业控制]
高压差分探头的工作原理及主要作用是什么
高压差分探头差分放大原理是指一对信号同时输入到放大电路中,然后相减,得到原始信号。差分放大器是由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。 高压差分探头可将任意间的两点浮接信号,转换成对地的信号,以供应示波器、电表、或计算机使用,非常多的电路,尤其是电机电路,含有直流抵补(DC OFFSET) 或交流抵补(AC OFFEST)甚至完全没有对地回路,此时冒然使用示波器将造成触电,或损坏示波器,或造成电线走火,此时唯有使用差分探头才是较好的选择。 常见的差分探头中有一类是针对低压信号的,在高速的数字电路中这种差分信号比较常见,这一类差分探
[测试测量]
选择低噪声纹波探头需注意的事项
当今大多数电子设计都要求不同的供电电压才能正确运行。事实上,一块电路内部许多元器件都要求多种电压,特别是高度集成的片上系统及多种技术接口在一起的微处理器设计。 由于许多因素,执行 DC 低噪声纹波探头测量正变得越来越困难,比如: ●功率效率功能,如功率门和动态电压和频率定标或DVFS ●动态负载,拥有快速瞬态信号 ●串扰和耦合提高 ●开关稳压器,上升时间更快 这就产生了一个重要问题:面对所有这些挑战,怎样才能保证系统的每个部分都获得正确的功率,来满足其需求? 首先,我们在整体上看一下低噪声纹波探头及其部分特点。非常重要的一点,是要看一下每条 DC 线路,看提供的功率是否位于目标系统或器件的容差频段内,包括线路的标称 DC 值,
[测试测量]