示波器是观察波形的窗口,它让设计人员或维修人员详细看见电子波形,达到眼见为实的效果。因为人眼是最灵敏的视觉器官,可以明察秋毫之末,极为迅速地反映物体至大脑,作出比较和判断。因此,示波器亦誉为波形多用表。
早期示波器只显示电压随时间的变化,作定性的观察。随后,改进的示波器具备定量的功能,测量幅度和时间,以及它们的变化情况。同时,为了记录和比较偶发事件,要借助照相机和示波管的长余辉效应。
模拟示波器的频率特性由垂直放大器和阴极示波管来决定。八十年代示波器引入数字处理和微处理器,出现数字示波器,现在把模拟示波器称为模拟实时示波器(ART),数字示波器称为数字存储示波器(DSO)。
ART需要与带宽相适应的放大器和阴极射线示波管,随着频率的提高,对阴极射线示波管的工艺要求严格,成本增加,存并瓶颈。DSO只要与带宽相适应的高速A/D转换器,其它存储器和D/A转换器以及显示器都是较低速成的部件,显示器可用LCD平面阵列和彩色屏幕。
DSO采用微处理器作控制和数据处理,使DSO具有超前触发、组合触发、毛刺捕捉、波形处理、硬拷贝输出、软盘记录、长时间波形存储等ART所不具备的功能,目前DSO的带宽也超过1GHz,在许多方面都超过ART的性能。
DSO也有不足之处,带宽取决于取样率,比较通用的取样率等于带宽的4倍。复现的波形靠内插算法补齐,波形会有失真;A/D转换速度快,但D/A转换速度慢,故波形更新率低,偶发信号会被遗漏;垂直分辨率一般用8位,显然较低;面板旋钮多,菜单复杂,使用不方便;没有亮度调制,观察不到三维图形;波形存储容量不够,无法对波形进行处理等等。
目前DSO的不足之处已基本被克服,但是并非全部良好性能都体现在同一部示波器内,亦即每部DSO都会有一定特点,也有某些不足,在选择型号时应该留意对比。有些型号的DSO具有与ART一样的波形更新率,有些型号的DSO却没有,有一种DSO具有ART的荧光屏三维图形显示能力,而大部分DSO不具备这种性能。大部分DSO实时带宽与单次带宽相同,但也有只保证实时带宽的DSO。
前述DSO都包含A/D转换器和微处理器。这样一来,在PC机增加插卡亦可构成DSO,但一般取样率较低,功能较少,价格也便宜。还有采用VXI总线的DSO模块,以及机架式的DSO插件。
DSO的存储器是示波器部件中仅次于A/D转换器的元件,它保存被测信号的样品,供后续的D/A转换器把波形复原,现在存储容量可达到1M以上。
普通DSO有8位垂直分辨率,即每次扫描有256个样品,需要256点的存储,相当256字节。如果提高分辨率,将水平轴扩大10倍,则相当20K字节;垂直轴亦扩大10倍,相当40K字节。由此可见,DSO最少应有2K字节,中等的DSO应有40K字节以上。如果要记录10倍上述的波形,则起码要400K字节以上。因此,存储容量大小很重要。
反过来,存储容量也影响到扫描速度,例如每扫迹只有50K点的存储器,记录100μs数据,则取样间距是2ns,此时取样率相当500MS/s,以取样率等于4倍带宽计算,实时带宽等于125MHz。
显然,如果需要提高取样率至1000MS/s,则记录100μs的数据,需要100K点的存储器。
为了存储一幅完整的图形,设图素是1024×512=0.5M位,四幅图形,要有2M位存储量。在FFT分析中也需要额外的存储量,将新的波形的分量与参考的波形或存储的波形作对比。为便于波形存储,有些DSO还提供软盘或硬盘作数据记录之用。
更详细的指标请与生产厂索取技术指标,根据用途和经费作全面对比,进行咨询,以便购买到既经济又适用的示波器。
关键字:模拟示波器 数字示波器 示波管
引用地址:模拟示波器与数字示波器差别
早期示波器只显示电压随时间的变化,作定性的观察。随后,改进的示波器具备定量的功能,测量幅度和时间,以及它们的变化情况。同时,为了记录和比较偶发事件,要借助照相机和示波管的长余辉效应。
模拟示波器的频率特性由垂直放大器和阴极示波管来决定。八十年代示波器引入数字处理和微处理器,出现数字示波器,现在把模拟示波器称为模拟实时示波器(ART),数字示波器称为数字存储示波器(DSO)。
ART需要与带宽相适应的放大器和阴极射线示波管,随着频率的提高,对阴极射线示波管的工艺要求严格,成本增加,存并瓶颈。DSO只要与带宽相适应的高速A/D转换器,其它存储器和D/A转换器以及显示器都是较低速成的部件,显示器可用LCD平面阵列和彩色屏幕。
DSO采用微处理器作控制和数据处理,使DSO具有超前触发、组合触发、毛刺捕捉、波形处理、硬拷贝输出、软盘记录、长时间波形存储等ART所不具备的功能,目前DSO的带宽也超过1GHz,在许多方面都超过ART的性能。
DSO也有不足之处,带宽取决于取样率,比较通用的取样率等于带宽的4倍。复现的波形靠内插算法补齐,波形会有失真;A/D转换速度快,但D/A转换速度慢,故波形更新率低,偶发信号会被遗漏;垂直分辨率一般用8位,显然较低;面板旋钮多,菜单复杂,使用不方便;没有亮度调制,观察不到三维图形;波形存储容量不够,无法对波形进行处理等等。
目前DSO的不足之处已基本被克服,但是并非全部良好性能都体现在同一部示波器内,亦即每部DSO都会有一定特点,也有某些不足,在选择型号时应该留意对比。有些型号的DSO具有与ART一样的波形更新率,有些型号的DSO却没有,有一种DSO具有ART的荧光屏三维图形显示能力,而大部分DSO不具备这种性能。大部分DSO实时带宽与单次带宽相同,但也有只保证实时带宽的DSO。
前述DSO都包含A/D转换器和微处理器。这样一来,在PC机增加插卡亦可构成DSO,但一般取样率较低,功能较少,价格也便宜。还有采用VXI总线的DSO模块,以及机架式的DSO插件。
DSO的存储器是示波器部件中仅次于A/D转换器的元件,它保存被测信号的样品,供后续的D/A转换器把波形复原,现在存储容量可达到1M以上。
普通DSO有8位垂直分辨率,即每次扫描有256个样品,需要256点的存储,相当256字节。如果提高分辨率,将水平轴扩大10倍,则相当20K字节;垂直轴亦扩大10倍,相当40K字节。由此可见,DSO最少应有2K字节,中等的DSO应有40K字节以上。如果要记录10倍上述的波形,则起码要400K字节以上。因此,存储容量大小很重要。
反过来,存储容量也影响到扫描速度,例如每扫迹只有50K点的存储器,记录100μs数据,则取样间距是2ns,此时取样率相当500MS/s,以取样率等于4倍带宽计算,实时带宽等于125MHz。
显然,如果需要提高取样率至1000MS/s,则记录100μs的数据,需要100K点的存储器。
为了存储一幅完整的图形,设图素是1024×512=0.5M位,四幅图形,要有2M位存储量。在FFT分析中也需要额外的存储量,将新的波形的分量与参考的波形或存储的波形作对比。为便于波形存储,有些DSO还提供软盘或硬盘作数据记录之用。
更详细的指标请与生产厂索取技术指标,根据用途和经费作全面对比,进行咨询,以便购买到既经济又适用的示波器。
上一篇:DSP实现DTMF信号发生器的关键技术
下一篇:嵌入式系统中数字示波器用户图形界面的实现
推荐阅读最新更新时间:2024-03-30 22:31
利用数字示波器测试开关电源的方法
从传统的模拟型电源到高效的 开关电源 ,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其
[电源管理]
一种2Gsps数字示波器数据采集系统的设计
数据采集系统是数字存储示波器的核心部分,在示波器采集控制电路的控制下,数据采集系统将待测的模拟信号量化后进行缓存,供示波器软件系统进行数据的处理、运算、显示。随着计算机技术的不断发展,高速ADC的性能不断提高,功能强大的DSP信号处理的实时性越来越强,可编程的逻辑器件的性能不断提升,为示波器数据采集系统的实现提供了一个可靠而且实用的数字平台。相应的,数据采集系统的采样速率、存储深度、波形捕获能力、鉴别能力等指标也在不断提高。国际上,示波器行业像安捷伦、泰克等公司在数字存储示波器市场上占据了主导地位,均有实时采样率达到几十Gsps的示波器面市,但是由于受到器件和工艺的限制,国内实现真正的高速高分辨率的数据采集系统还具有比较大的困难。
[测试测量]
数字示波器在汽车维修的应用
数字 示波器 是示波器中常用的一种类型,与普通的示波器相比更加智能化、功能更加全面,被广泛的应用于工业、电子、一些、机械、电力等多个行业当中。数字示波器在汽车维修中的应用也是非常广泛的,今天小编就来为大家具体介绍一下数字示波器在汽车维修中的应用吧,希望可以帮助到大家。 1.数字示波器在汽车维修中的作用 汽车电子设备的有些信号变化速率是非常快的,变化周期达到千分之一秒,通常测试 仪器 的扫描速度应该是被测信号的5~10倍。许多故障信号是间歇的,时有时无,这就需要仪器的测试速度高于故障信号的速度。数字示波器可以满足这个速度要求,它不仅可以快速捕捉电路信号,还可以用较慢的速度来显示这些波形,以便维修人员可以一面观察,一面分析。它还可以用
[测试测量]
关于ADC应用100Msps的数字示波器的案例分析
自己动手做一个信号发生器和示波器非常重要,不仅可以深刻理解测量仪器的工作原理、关键技术指标,还可以将书本上学过的模拟电路、数字逻辑乃至嵌入式系统全部串起来,从系统层面对各个部分的功能以及构成有更真切的认识,因此这两个项目应该是所有电子工程师都要动手做一遍的基础入门项目。 高速ADC是数字示波器的核心部件,今天关于ADC应用的文章就结合我们摩尔吧/硬禾实战营的一个实际项目 - 100Msps的数字示波器的制作来做一个简单的案例分析,数字和处理部分将在将来的文章中具体分析,今天集中在模拟部分: 数字示波器的构成框图 我们的项目对模拟部分的主要指标要求如下: • 单通道、100Msps采样率 • 模拟带宽20MHz,输入电压的范
[测试测量]
RTO2000系列数字示波器的主要特点及性能分析
RTO2000示波器全新升级上市,为满足用户特殊需求而拥有众多独特性创新。RTO2000不仅拥有业内出色的时频域测试能力,还配备业内第一个时频域ZONE触发功能,用户可针对任何信号细节进行触发。基于更大的12.1英寸高分辨率电容触控屏,用户可获得更佳的操控体验。全面升级的用户界面方便更好的理解各种配置菜单设置。 主要特点: • 精确的测量源于极低的噪声电平:可达量程范围的1% (1mV/Div,1GHz) • 单核ADC,高动态范围 • 丰富的测量功能:超过90个自动测量类型 • 高分辨率触摸屏,操作简便 • 颜色编码控件,方便辨识 • 业内标杆级别的400MHz逻辑分析:5Gsample/s采样率,16通道,每通道200Ms
[测试测量]
使用数字示波器进行多域测量的介绍
示波器是一种常用的检测仪器,可以把人们肉眼无法看到的电信号转换为可见图像,具有测量精准、准确度好、可靠性高、使用寿命长等优点。我们在使用示波器的时候对于示波器的各种使用知识都是需要掌握的,今天小编就来为大家具体介绍一下使用数字示波器进行多域测量吧,希望大家可以更加了解示波器的使用。 在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或捕捉它们之间的关系。采用微控制器实现的RF信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人头痛的问题。 通常可以使用数字示波器分析这些信号所产生的
[测试测量]
如何测试数字示波器的波形捕获率?
有的朋友买了示波器,看到示波器的刷新率标称,可能会很好奇,想知道能否测出来。相对于采样率、存储深度等由硬件特性决定的指标,刷新率完全是由处理器处理方式决定的,合理的数据处理方式可以得到更高的刷新率,接下来我们就手把手教大家测量示波器的刷新率,感兴趣的朋友可以拿起手中的示波器测一下。 首先我们先来了解下示波器刷新率(也叫波形捕获率)的概念。 波形捕获率概念 波形捕获率是个什么概念呢?波形捕获率是相对于数字示波器来说的。数字示波器采样、处理数据、把数据在屏幕上显示出来都是需要时间的。我们也可以这样理解,示波器会眨眼睛。它们会每秒睁开眼睛多少次,来捕获信号,其间则会闭上眼睛去处理数据,把数据显示到屏幕上。 处理数据和把数据在屏
[测试测量]
数字示波器的用处
1.对一个已设计完成的产品,如何用示波器经行检测分析其可靠性? 答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。 2.决定 示波器探头 价格的主要因素是什么? 答:示波器探头有非常多的种类,不同的性能,比如高压,差分,有源高速探头等等,价格也从几百人民币到接近一万美元。价格的主要决定因素当然是带宽和功能。探头是示波器接触电路的部分,好的探头可以提供测试需要的保真度。为做到这一点,即使无源探头,内部也必须有非常多的无源器件补偿电路(RC网络)。
[测试测量]