CPLD在多功能谐波分析仪设计中的应用

发布者:老王古玩店最新更新时间:2012-11-07 来源: 21ic 关键字:CPLD  谐波分析仪  plusII10.2 手机看文章 扫描二维码
随时随地手机看文章
1采样方法比较

对三相电压、电流6路模拟量进行数据采集时,一般有两种方法:①同相电压电流交替采样法:在被测信号的一个周期内,采样256点,其中128个奇数点为电压采样点;128个偶数点为电流采样点。采电压和采电流的时差为Δt=T/256(T为被测信号周期)。由Δt引起的同相电压电流的相位误差为δui=360*f*n*Δt(度)。式中f——被测信号频率,n——谐波次数。由上式可知相位误差随时差Δt、谐波次数n增大而增大,这是造成相位差存在并且不一致的根本原因。另外还有一个原因,当电网频率畸变时,由于采样是定时采样,不能跟随频率变化,也会造成测量误差。②同相电压电流整周期同步采样法:同相电压、电流采取的是同步采样,分时传输的方法。这样,就不存在时差问题,相位差也就不存在;对于电网频率畸变的问题,常用的方法是锁相环技术。它是通过对电网电压信号取样进行带通滤波,提取出电网基波信号,然后进行整形处理,获得与基波信号频率一致的方波信号,将它进行锁相倍频,获得输出频率为f0=N*fi的方波信号,以此作为整周期同步采样脉冲信号。由此,采样间隔也就随被测信号的频率变化而相应变化,但是,这又增加了硬件的开销。在本设计中,采用的是整周期同步采样方法:由CPLD和单片机配合产生符合要求的整周期同步采样脉冲信号。

2工作原理及硬件构成

2.1系统的工作原理

首先让被测信号经过抗混叠低通滤波器电路进行预处理,对其中1路信号通过测频模块进行精确的频率测量,把频率参数传输到单片机,由其通过运算确定分频系数,然后,回送到CPLD的总控制器中,总控制器由此产生采样脉冲信号。在采样过程中,对于同相电压、电流信号采用的是同步保持,通过多路开关分时采样。其中,3路采样保持器的控制信号Ca,Cb,Cc,多路开关的地址选通信号A1,A2,A3由CPLD控制产生。把选通的1路信号送入AD开始转换,并检测转换结束信号。当一次AD转换结束时,通过RAM地址发生器产生的地址和读写控制时序,把AD转换的结果直接送入双口RAM存储。然后,进行下一次采样。当A相信号采样完成后,就顺序采样B相、C相信号。本设计中的MCS51单片机主要负责运算及人机接口的管理,这将大大提高整个系统的运行效率,提高了运算的精度,又兼顾了运算的响应速度。

2.2主要硬件的选择

由于CPLD是高速器件,所以在采样频率很高的时候,多路开关和AD转换器就成为制约采样频率的主要因素。当采样频率达到兆级的时候,RAM的存储速度又成为了另外一个制约因素。

在本设计中,要求分析的谐波次数达到50次,被测信号在45Hz~55Hz范围内,频率自动跟随。根据香农定理知:采样频率应该大于或者等于被测信号频率的2倍。要求每个周期采样128点,这样总的采样频率为f=128*55*2=14.08kHz,所以采样周期为T=1/fs=71.02μs。采样保持器选择AD582,它是反馈型结构,在精度要求不高(≤0.1%)而速度要求较高时,可选用CH=1000pF,捕捉时间tAC≤6μs。多路开关选用MAX382,它开关速度快,在双电源,连续供电工作方式下,典型开关时间在100ns左右。它的主要特点是:工作电压低、通道电阻小(≤100Ω)、具有数字输入锁存、TTL/CMOS电平兼容、具有ESD静电保护功能等。ADC转换器选用MAX172,该芯片是5V电源供电的12位模数转换芯片,CMOS工艺制造,速度快,转换时间为10μs,具有基准源,外接时钟,频率要求为1.25MHz。

2.3CPLD器件简介

在本设计中选用的是EP1K100QC208-3,它是ALTERA公司推出的ACEX1K系列下的一款FPGA芯片。上电时需要重新对芯片进行配置。片内有100,000可用门,有4,992个逻辑单元,内嵌12个EAB。每个EAB的容量为512Byte,可以非常方便地构造RAM、ROM、FIFO或双口RAM等功能。本设计中6KB的双口RAM正是基于此构建的。其有208个管脚,可用I/O管脚数为147个。

3CPLD内部电路实现

本设计的软件是在MAX+plusII10.2下完成的,顶层文件是*.gdf图形文件,低层用AHDL硬件描述语言来描述。

3.1测频模块

测频模块的主要作用是:①测量电网频率;②确定分频系数,产生跟随频率变化的同步脉冲。测频原理:由于测量的频率在50Hz左右,采用脉宽测量方式,即首先对被测信号进行2分频,使信号的正负脉宽相等,然后利用正脉宽对50MHz的标准脉冲进行计数。正脉宽上升沿来时,计数器开始对标准脉冲计数;下降沿来时,锁存当前的计数值Con。通过以下关系确定频率f、分频系数N。 [page]

分频系数为:系统时钟源频率与分频得到脉冲频率(256*f)的比值的一半再减去1,即:

3.2S/H时序控制模块

由于采用的是同相电压、电流同步采样技术,所以对S/H的控制时序要求严格。同步采集某相电压电流1次的时间≤71.02μs。同相电压、电流间要求是同时保持,分时采样。由于ADC582的捕捉时间约为6μs,所以S/H时序脉冲低电平应至少为10μs,在此期间,采样保持器处于跟踪状态;高电平为60μs,在高电平期间,采样保持器处于保持状态。前30μs对电压信号进行AD转换并存储;后30μs对电流信号进行AD转换并存储。仿真波形如图2。

3.3多路开关MAX382的地址产生及ADC控制模块

在AD582控制脉冲一个周期的高电平期间,要采集电压、电流各1次,所以多路开关MAX382需要选通2次,AD芯片MAX172也需要启动2次。第1次MAX382选通起始于AD582控制脉冲上升沿来临以后的1μs时刻;第2次起始于中间31μs处,延时1μs。这是因为采样保持器的输出还有一段波动,经过一定时间tST才保持稳定,为了量化的准确,所以在保持指令发出后,延时1μs。AD启动脉冲开始于AD582控制脉冲2μs、32μs处,也延时1μs。MAX172的控制端有:CS,HEN,RD;转换结束状态线:BUSY。当CS=0,RD=0,BUSY=0时,AD正在转换;BUSY=1时,转换结束;HEN=1,读转换结果的高4位数据,HEN=0时,读转换结果的低8位数据。该模块要结合硬件来仿真。MAX172的控制时序图如图3。

3.4双口RAM地址发生器及读写控制模块

ACEX1K100器件内嵌EAB单元,可构成容量大约为6KB的双口RAM,由于MAX172是12位AD,而MCS-51的数据总线只有8位,所以,需要把1次采样的数据分成2个字节,分别存储。因为电压、电流分时交替转换,所以,在地址发生器中要有一个确定的映射规则,调整其存储地址,以使电压、电流在双口RAM中分块顺序存储。另外,在双口RAM中,当对同一地址单元同时进行读写时,要有一个仲裁机制,对其进行控制;当读写发生冲突时,我们约定:CPLD写双口RAM具有优先权,只有当写操作结束后,MCS-51单片机才被允许读该单元。该模块的仿真波形见图4。

3.5通信模块

该模块是在CPLD内部构建一个串行发送电路端口,实现MCS-51单片机与CPLD器件之间的通信功能。(1)在正常工作模式下,频率、同步脉冲的分频系数等重要数据需要通信。(2)在系统升级模式下,单片机发送控制数据给CPLD实现升级。通信方式为串行单工通信,MCS-51单片机发送数据,CPLD接受数据。通信波特率约定为9600bps,通信的帧结构:1帧10位数据,1位起始位(低电平),8位数据位,低位在前;1位停止位(高电平)。帧与帧之间有3位空闲位(高电平)以确保通信正确。

4结论

在电力谐波分析仪的设计中,CPLD的应用使采样的速率大大提高,由于采用频率跟随技术,可以满足高精度的测量需要。另外,也减轻了MCS-51单片机的负担,提高了系统的响应速度,实时性更强。该设计还有另外一个优点,系统升级方便,只要把ADC芯片换成MAX162,单片机的程序稍做修改即可。当然也可以实现在线修改,实现远程控制等功能。

参考文献
[1]仇润鹤,任子晖,等.单片机在电网谐波分析仪中的应用[J].中国矿业大学学报,1994,23(1).
[2]徐会明,卢锦凤,等.GXY-90工频谐波分析仪设计中的几项先进技术[J].仪器仪表学报,1994,15(2).
[3]李绍铭,杨伟翰,等.高速数据采集与谐波分析仪的设计[J].自动化仪表,1999,(12).
[4]付慧生,袁小平,庄乾起.复杂可编程逻辑器件与应用设计[M].中国矿业大学出版社,2003.
关键字:CPLD  谐波分析仪  plusII10.2 引用地址:CPLD在多功能谐波分析仪设计中的应用

上一篇:逻辑分析仪在嵌入式开发调试中的应用
下一篇:便携式数据采集分析仪的研制

推荐阅读最新更新时间:2024-03-30 22:31

12位A/D转换器ADS7864在电网谐波分析仪中的应用
1 引言        随着用电量的增加,电网的谐波污染变得日益严重,这就要求电力监控设备能够及时准确地对电网谐波分量进行监测,在笔者研制的电网谐波分析仪中,使用ADS7864对各相关点的波形信号进行采集,实践证明,ADS7864的采样精度及稳定性是令人满意的。          ADS7864是Burr-Brown公司(已被德州仪器收购)开发的12位6通道A/D转换器,其主要特点如下:         6个模拟输入通道同时采样与保持;         2μs转换时间,500kS/s采样速率;         全差分输入;      & nbsp;  功耗低,为50mW;         6个FIFO
[电源管理]
12位A/D转换器ADS7864在电网<font color='red'>谐波</font><font color='red'>分析仪</font>中的应用
可编程逻辑器件在高准确度A/D转换器中的应用
1 引 言   可编程逻辑器件(PLD)是当今国际上流行的新一代数字系统逻辑器件。它主要是一种“与-或”两级式结构器件,除了具有高速度、高集成度性能之外,其最大的特点就是用户可定义其逻辑功能。因此PLD能够适应各种需求,大大简化系统设计,缩小系统规模,提高系统可靠性,受到广大工程技术人员的青睐。   可编程逻辑器件种类繁多,性能各异,主要有以下几种基本类型:可编程只读存储器(PROM),现场可编程逻辑阵列(FPGA),编程阵列逻辑(PAL),通用阵列逻辑(GAL)。通用阵列逻辑GAL(Generic ArrayLogic)是新一代的可编程逻辑器件,是采用先进的E2CMOS工艺制造的大规模集成电路,是新产品设计的理想器件。用户可
[模拟电子]
<font color='red'>可编程逻辑器件</font>在高准确度A/D转换器中的应用
I2C器件接口IP核的CPLD设计
I2C器件接口IP核的CPLD设计 根据单片机I2C串行扩展的特点,在EDA软件MaxplusII的环境下,利用AHDL语言,建立IP核。此设计利用状态机实现,在给出设计的同时详细说明IP核的建立过程,并下载到芯片通过硬件试验验证。 关键词:  可编程逻辑器件 I2C串行扩展 IP核   由于CPLD数字设计结构化的趋势,将出现针对CPLD不同层次的IP(Intellectual Property)核。各个IP核可重复利用,可大大提高设计能力和效率。国外各大公司都推出了专门的IP核,我国也迫切需要发展自己的IP核。本文针对I2C的主方式串行扩展通信的特点,详细给出设计过程和结果。 1 IP核简介   IP核是指:将一些在
[模拟电子]
I2C器件接口IP核的<font color='red'>CPLD</font>设计
基于CPLD的LED显示屏控制电路设计
近年来,随着计算机技术和集成电路技术的飞速发展,得到广泛应用的大屏幕显示系统当属视频 LED 显示系统。在LED显示技术中,由于红色、绿色发光二极管的亮度、光效色差等性能也得到了很大的提高,加之计算机多媒体制作软件的发展,现在伪彩视频LED显示系统的制造成本大大降低,应用领域不断增加。这种伪彩色视频LED显示系统采用了计算机多媒体技术,全同步动态显示视频图像,图像清晰,亮度高,无拼缝,每种颜色的视频灰度等级已经由早期的16级灰度上升现在的256灰度,随着大规模集成电路和专用元器件的发展,256级灰度的全彩色视频LED显示系统随时都可能实现。   LED电子显示技术发展迅速,已成为当今平板显示领域的主导之一。本文着重介绍用M4A5-
[电源管理]
基于<font color='red'>CPLD</font>的LED显示屏控制电路设计
得益于低功耗CPLD技术的手持装置研究
手持装置的设计者,如设计智能电话、便携媒体播放器和GPS系统等,总是在寻找各种方法来延长产品中所用电池的寿命。复杂可编程逻辑器件(CPLD)给在低功耗设备中集成特殊逻辑和专用IP提供了灵活性。 使CPLD更加吸引关心功耗的设计者的原因是出现了“零功耗”CPLD,它们提供了全新的特征来延长电池寿命。在手持装置中,可编程逻辑通常用于替代某些任意逻辑,实现控制或执行短数据路径。具有低功耗和小体积优点的CPLD器件是这些应用的理想选择,这些“零功耗”CPLD器件具有各种创新特征来支持手持装置的低功耗设计。 CPLD中降低功耗的技术 通过优化设计架构来降低功耗的实现方法有很多种,包括降低时钟频率、总线端接、低电压工作,以
[工业控制]
得益于低功耗<font color='red'>CPLD</font>技术的手持装置研究
一款基于CPLD的LED显示屏控制电路解决方案
引言   近年来,随着 计算机 技术和 集成电路 技术的飞速发展,得到广泛应用的大屏幕 显示 系统当属视频 led显示 系统。在LED显示技术中,由于红色、绿色发光二极管的 亮度 、 光效 色差等性能也得到了很大的提高,加之计算机多媒体制作软件的发展,现在伪彩视频LED显示系统的制造成本大大降低,应用领域不断增加。这种伪彩色视频LED显示系统采用了计算机多媒体技术,全同步动态显示视频图像,图像清晰,亮度高,无拼缝,每种颜色的视频灰度等级已经由早期的16级灰度上升现在的256灰度,随着大规模集成电路和专用元器件的发展,256级灰度的全彩色视频LED显示系统随时都可能实现。    LED电子 显示技术发展迅速,已成为当今 平
[电源管理]
一款基于<font color='red'>CPLD</font>的LED显示屏控制电路解决方案
MCS-51单片机与CPLD/FPGA接口逻辑设计
在功能上,单片机与大规模CPLD有很强的互补性。单片机具有性能价格比高、功能灵活、易于人机对话、良好的数据处理能力潍点;CPLD/FPGA则具有高速、高可靠以及开发便捷、规范等优点。以此两类器件相结合的电路结构在许多高性能仪器仪表和电子产品中仍将被广泛应用。本文就单片机与CPLD/FPGA的接口方式作一简单介绍,希望对从事单片机和CPLD/FPGA研发的朋友能有所启发。 单片机与CPLD/FPGA的接口方式一般有两种,即总线方式与独立方式,分别说明如下: 一、总线方式 单片机以总线方式与CPLD/FPGA进行数据与控制信息通信有许多优点。 (1)速度快。如图一所示,其通信工作时序是纯硬件行为,对于MCS-51单片机,只需一条单字节
[单片机]
拓展中国大陆、香港及台湾分销网络 赛灵思宣布世健科技为授权分销商
2007年4月2日,中国北京 - 全球领先的可编程逻辑供应商赛灵思公司(Xilinx, Inc. (NASDAQ:XLNX))和领先的先进元器件分销商和完整解决方案供应商世健科技有限公司(SGX:Excelpoint)日前宣布达成了一项新的分销协议,可立即生效。根据该协议,赛灵思将授权世健科技在中国大陆、香港和台湾地区分销该公司的全系列产品,包括所有的可编程门阵列(FPGA)产品、复杂可编程逻辑器件(CPLD)产品、开发软件和IP内核。此次牵手世健科技,使得赛灵思公司在大中国的分销体系从原有的安富利(Avnet Inc.,) 亚太有限公司和好利顺电子有限公司(Nu Horizons Electronics Corp.)两家扩展到了
[焦点新闻]
热门资源推荐
热门放大器推荐
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved