基于1ppm DAC的精密仪器仪表设计

发布者:安静宁静最新更新时间:2013-01-08 来源: 21ic 关键字:1ppm  DAC  精密仪器仪表 手机看文章 扫描二维码
随时随地手机看文章
为了提高仪器仪表系统的精度,数模转换器的性能已经突破16位,而以前必须采用笨重、昂贵、慢速的Kelvin-Varley分压器才能达到这一性能水平。

然而,随着时间的推移,市场和技术不断发展,关于精密数模转换器的定义也已发生变化。半导体处理技术、DAC设计和校准技术的发展使高线性度数模转换器成为可能。这种转换器不仅稳定性好、建立时间短,而且能提供优于1ppm的20位性能。这类小型IC保证性能规格,无需校准且简单易用。

1ppm DAC的应用范围覆盖从医疗MRI系统中的梯度线圈控制到质谱测定、测试和测量应用中的精密源和定位。

性能指标

图1所示电路提供1ppm性能,其关键技术指标是积分非线性度、微分非线性度和0.1Hz至10Hz峰峰值噪声。

newmaker.com

图1中,U1是一个具有1ppm线性度指标的20位DAC。U2是一个精密双通道放大器,用作DAC基准电压输入的驱动-检测缓冲器。U3是一个精密输出缓冲器,用于驱动负载,其关键要求与基准电压缓冲器相似,其中包括低噪声、低失调电压、低漂移和低输入偏置电流。

虽然有1ppm以下的精密元件可供使用,但构建1ppm系统并非易事,不可等闲视之。1ppm精度电路中的主要误差源为噪声、温度漂移和热电电压。

*噪声

为实现真正的1ppm系统,必须将噪声降至最低水平。U1的噪声频谱密度为7.5 nV/vHz。U2和U3的额定噪声密度为2.8 nV/vHz,远远低于DAC的噪声贡献。

宽带噪声可以通过滤波消除,但0.1Hz至10Hz范围内的低频噪声(1/f)却无法滤除。要尽量降低这一噪声,最有效的方法在于器件优化和选择。U1在0.1Hz至10Hz带宽下产生0.6μV p-p噪声,远低于1LSB(对于±10V输出,1LSB = 19μV)。系统中1/f噪声的设计目标值应为0.1LSB或2μV左右。信号链中的三个放大器在电路输出端总共产生大约0.2μV p-p的噪声。加上U1的0.6μV p-p噪声,预计总1/f噪声为0.8μV p-p。

*温度漂移

温度漂移是精密电路中的另一个主要误差源。U1的温度系数为0.05ppm/℃。U2的漂移系数为0.6μV/℃,即总体会向电路中引入0.03ppm/℃的漂移。同时U3再贡献0.03ppm/℃的输出漂移,这样三者相加后为0.11 ppm/℃。对于调节和增益电路,建议使用低漂移、热匹配电阻网络,如Vishay的300144Z和300145Z。 [page]

*热电电压

热电电压是塞贝克(Seebeck)效应的结果:异质金属结面处会产生与温度相关的电压。所产生的电压在0.2μV/℃(铜-铜结面)至1mV/℃(铜-铜氧化物结面)之间。

热电电压表现为与1/f噪声相似的低频漂移。使所有连接保持整洁,消除氧化物,并且屏蔽电路使其不受气流影响,可以大幅降低热电电压。下图显示了开放式电路与屏蔽式电路在电压漂移上的差异。

newmaker.com
开放式系统和封闭式系统的电压漂移与时间关系

长期稳定性

精密模拟IC虽然很稳定,但确实会发生长期老化变化。DAC的长期稳定性一般好于0.1ppm/1000小时,但老化不具累积性质,而是遵循平方根规则。若某个器件的老化速度为1ppm/1000小时,则2000小时老化2ppm,3000小时老化3ppm,依此类推。一般地,温度每降低25°C,时间就会延长10倍;因此,当工作温度为100°C时,在10000小时的期间(约60星期),预计老化为0.1ppm。以此类推,在10年期间,预计老化为0.32ppm。

电路构建和布局

在注重精度的电路中,精心考虑电源和接地回路布局有助于确保达到额定性能。在设计PCB时,应采用模拟部分与数字部分相分离的设计,并限制在电路板的不同区域内。

必须采用足够大(10μF)的电源旁路电容,与每个电源上的0.1μF电容并联,并且尽可能靠近封装。这些电容应具有低等效串联电阻和低等效串联电感。各电源线路上若串联一个铁氧体磁珠,则可进一步降低通过器件的高频噪声。

电源线路应采用尽可能宽的走线,以提供低阻抗路径,并减小电源线路上的毛刺噪声影响。时钟等快速开关信号应利用数字地屏蔽起来,以免向电路板上的其它器件辐射噪声,并且绝不应靠近基准输入或位于封装之下。避免数字信号与模拟信号交叉,且它们在电路板相反两侧上的走线应彼此垂直,以减小电路板的馈通影响。

构建1ppm模数转换解决方案

一种典型的现代1ppm模数转换解决方案由两个16位数模转换器构成——一个主DAC和一个辅助DAC。其输出经缩放和组合后产生更高的分辨率。主DAC输出与经衰减的辅助DAC输出相加,使辅助DAC填补主DAC LSB步长之间的分辨率间隙。

组合后的输出需要具备单调性,但线性度无需极高,因为高性能是通过精密模数转换器的恒定电压反馈取得的,该转换器会校正固有的元件误差。因此,电路精度受ADC的限制而不受限于DAC。然而,由于要求恒定电压反馈以及不可避免的环路延迟,这种解决方案速度较慢,建立时间可能长达数秒。

尽管这种电路能够取得1ppm的精度,但设计难度较大,很可能需要重复设计多次,而且需要通过软件引擎和精密ADC来实现目标精度。为了保证1ppm的精度,ADC还需进行校准,因为目前市场上还没有保证1ppm线性度的ADC。此处所示框图只是概念的展示,真实的电路要复杂得多,涉及多个增益、衰减和求和级,并包括许多元件。

同时还需要数字电路,以方便DAC与ADC之间的接口,更不用说用于误差校正的软件了。
关键字:1ppm  DAC  精密仪器仪表 引用地址:基于1ppm DAC的精密仪器仪表设计

上一篇:孔板流量计计量不准确的原因有哪些?
下一篇:非接触式测温仪表优缺点

推荐阅读最新更新时间:2024-03-30 22:33

12位8通道2线接口数模转换器DAC7678
     DAC7678是一款带 I2C 接口的 12 位 8 通道数模转换器 (DAC),可充分满足无线基站功率放大器控制、便携式仪表、数据采集系统以及激光偏置控制等多通道高密度应用的需求。DAC7678 是 TI 首款具有双线 I2C 接口的 8 通道 DAC,其不但能够简化布局,而且还可最大限度地缩短设计时间。DAC7678 包含集成型输出缓冲放大器及 2.5 V 内部参考,可配置复位到零或中间值。    主要特性与优势:   高通道数集成、I2C 接口与集成型高精度参考可简化布局,并最大限度地缩短高密度应用的设计时间,   24 引脚 4 毫米 x 4 毫米 QFN 封装则可节省板级空间   ±为5m
[嵌入式]
DAC34H84 HD2 性能优化与 PCB 布局建议
摘要 本文分析了DAC 二次谐波的产生,并给出了优化DAC34H84 谐波性能的 PCB 布局。 Key words: HD2(二次谐波),DAC(数模转换器),SFDR(无杂散动态范围) 1. 引言 DAC34H84 是一款由德州仪器(TI)推出的四通道、16 比特、采样 1.25GSPS、功耗1.4W高性能的数模转换器。支持625MSPS 的数据率,可用于宽带与多通道系统的基站收发信机。 由于无线通信技术的高速发展与各设备商基站射频拉远单元(RRU/RRH)多种制式平台化的要求,目前收发信机单板支持的发射信号频谱越来越宽,而中频频率一般没有相应提高,所以中频发射DAC 发出中频(IF)信号的二次谐波(HD2)或中频与
[电源管理]
<font color='red'>DAC</font>34H84 HD2 性能优化与 PCB 布局建议
四路输出D/A转换器DAC8420及其应用
1 DAC8420的主要特点 DAC8420是AD公司生产的四路输出12位DAC。该DAC具有高速串行接口,而且功耗很低,能广泛应用于伺服系统控制、过程自动化控制及ATE中。其主要特点如下: ●可选择单极或双极模式; ●复位后,输出置0或置中间值; ●电源选择广泛,单+5V~%26;#177;15V均可; ●采用16脚PDIP、CERDIP或SOIC封装。 2 DAC8420的引脚功能 DAC8420的引脚排列如图1所示,各引脚功能及使用说明如下: VDD:正电源,范围为+5V~+15V; VSS:负电源,范围为0~15V; GND:数字地。 CLK:系统串行时钟输入,逻辑上与CS信号相或。在时钟上升沿,
[模拟电子]
芯和半导体在DAC 2022大会上发布EDA 2022版本软件集
2022年7月13日,中国上海讯——国产EDA行业的领军企业芯和半导体,在近日举行的DAC 2022大会上正式发布了EDA 2022版本软件集。设计自动化大会DAC是全球EDA领域最富盛名的顶级盛会。本届大会在美国旧金山举办,从7月10日到7月14日,为期四天。 芯和半导体此次发布的Xpeedic EDA 2022版本软件集,在先进封装、高速设计和射频系统电磁场仿真领域增添了众多的重要功能和升级,以系统分析为驱动,芯片-封装-系统全覆盖,全面支持先进工艺和先进封装。 亮点包括: 2.5D/3D 先进封装 • Metis 2022:针对2.5D/3DIC先进封装的电磁仿真平台 内嵌的矩量法求解器得到了进一步的
[半导体设计/制造]
芯和半导体在<font color='red'>DAC</font> 2022大会上发布EDA 2022版本软件集
STM32学习笔记—DAC基础内容及常见问题
DAC,Digital-to-Analog Converter(数模转换器),DA转换和AD转换有着同样重要的作用,在许多场合都能看到DAC的应用。 今天是第8篇分享,《STM32学习笔记》之DAC基础内容及常见问题。 DA转换器是把数字量转变成模拟量的器件,按模拟量输出类型通常分为:电流和电压输出类型。常见的DAC是电压输出型,在STM32中集成的DAC转换模块为电压输出型数模转换器。 STM32 DAC 基础内容 STM32内部集成的DAC输出通道和功能与型号有关,一般有1到3个通道。 下面结合STM32F4描述一下DAC基本的参数信息: 1. DAC分辨率 分辨率决定了DAC的转换精度,目前STM32内部集成的DA
[单片机]
Stm32f103 DAC 学习笔记
最近在做电流型信号输出的项目,遇到了些问题这里把这些解决方法做一个笔记方便以后运用。在搞这个的时候因为手册这部分讲的不是很详细,所以在使用上也遇到了些阻力。 用的是64封装的芯,此芯ADC的基准Vref+和电源是同一个端口,Vref-共用电源地。在电池输出时AD值为0时 取样电阻100欧姆 有0.66mA的电流输出,只要在初始化时只要失能端口输出缓冲,输出可到0.0025mA。OK问题就解决了。 1 void AnalogInit(void) 2 { 3 DAC_InitTypeDef DAC_InitStructure; 4 GPIO_InitTypeDef GPIO_InitStructure; 5
[单片机]
DAC数模转换后缓冲低通滤波电路
  第一级低通缓冲使用的运放OPA627单运放集成,频率最大可达16MHZ,转换速率可达55V/us,各个参数都相当的不错。第二级使用的是双运放OPA2134,极富胆味。这个电路主要是比较简单,方便初学者制作,只要使用的元件选料好点,都可以让你的CD机脱胎换骨。其中U1的负输入端(即2脚)接在DAC数模解码的输出端即可。这两片IC价格有点贵,经济条件一般的朋友可以选用其他的由场效应管构成输入的运放IC,例如中端的 OP275,低价的可以选用LF353或单运放LF356(注意:LF系列只有NS国半的声音还过得去,其他的不做考虑),TL082或TL072也属于这类,但用在这里就没有摩机的必要了。个人认为最少要用国半的LF353.
[电源管理]
<font color='red'>DAC</font>数模转换后缓冲低通滤波电路
STM32 —— 多路DAC(输出电压和正弦波)
//========================================DAC========================================= #define DA_OUT1_CHANNEL DAC_Channel_1 #define DA_OUT1_GRP GPIOA #define DA_OUT1_INDEX GPIO_Pin_4 #define DA_OUT1_HIGH() GPIO_SetBits(DA_OUT1_GRP, DA_OUT1_INDEX) #define DA_OUT1_CONFIG() GPIOConfig(DA_OUT1_GRP, DA_OUT1_INDEX
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved